Clinical relevance: Investigation of refractive errors amongst Swedish schoolchildren will help identify risk factors associated with myopia development. Background: Genetic and hereditary aspects have been linked with the development of myopia. Nevertheless, in the case of 'school myopia' some authors suggest that environmental factors may affect gene expression, causing school myopia to soar. Additional understanding about which environmental factors play a relevant role can be gained by studying refractive errors in countries like Sweden, where prevalence of myopia is expected to be low. Methods: Swedish schoolchildren aged 8-16 years were invited to participate. Participants underwent an eye examination, including cycloplegic refraction and axial length (AL) measurements. Predictors such as time spent in near work, outdoor activities and parental myopia were obtained using a questionnaire. Myopia was defined as spherical equivalent refraction (SER) ≤ −0.50D and hyperopia as SER ≥ +0.75D. Results: A total of 128 children (70 females and 58 males) participated in this study with mean age of 12.0 years (SD = 2.4). Based on cycloplegic SER of the right eye, the distribution of refractive errors was: hyperopia 48.0% (CI95 = 38.8-56.7), emmetropia 42.0% (CI95 = 33.5-51.2) and myopia 10.0%. (CI95 = 4.4-14.9). The mean AL was 23.1 mm (SD = 0.86), there was a correlation between SER and AL, r = −0.65 (p < 0.001). Participants with two myopic parents had higher myopia and increased axial length than those with one or no myopic parents. The mean time spent in near work, outside of school, was 5.3 hours-per-day (SD = 3.1), and mean outdoor time reported was 2.6 hours-per-day (SD = 2.2) for all the participants. The time spent in near work and outdoor time were different for different refractive error categories. Conclusion: The prevalence of myopia amongst Swedish schoolchildren is low. Hereditary and environmental factors are associated with refractive error categories. Further studies with this sample are warranted to investigate how refractive errors and environmental factors interact over time.
After 3 months, the dual treatments (altering SA and vision training) used in the study were effective in modifying accommodation. The static accommodative response to targets at proximal distances was increased by the altered SA contact lenses and rates of dynamic accommodation improved with vision training.
Adding negative SA to the eye generally improves the slope of the accommodation stimulus-response curve and decreases lag of accommodation, and positive added SA depresses the slope of the stimulus-response curve and increases lag. The effect seems to be specific to SA, as there was no relationship between lag and RMS error. Altering SA may be a viable way of changing accommodative functions in clinical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.