ZnO nanomaterials and nanoparticles are a burgeoning field of research and a rapidly expanding technological sector in a wide variety of application domains.
A hydrogen fuel cell is a highly promising alternative to fossil fuel sources owing to the emission of harmless byproducts. However, the operation of hydrogen fuel cells requires a constant supply of highly pure hydrogen gas. The scarcity of sustainable methods of producing such clean hydrogen hinders its global availability. In this work, a noble Au-atom-decorated glassy carbon electrode (Au/GCE) was prepared via a conventional electrodeposition technique and used to investigate the generation of hydrogen from acetic acid (AA) in a neutral electrolyte using 0.1 M KCl as the supporting electrolyte. Electrochemical impedance spectroscopy (EIS), open circuit potential measurement, cyclic voltammetry (CV), and rotating disk electrode voltammetry (RDE) were performed for the characterization and investigation of the catalytic properties. The constructed catalyst was able to produce hydrogen from acetic acid at a potential of approximately −0.2 V vs. RHE, which is much lower than a bare GCE surface. According to estimates, the Tafel slope and exchange current density are 178 mV dec−1 and 7.90×10−6 A cm−2, respectively. Furthermore, it was revealed that the hydrogen evolution reaction from acetic acid has a turnover frequency (TOF) of approximately 0.11 s−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.