Micro heat pipes are small structures that will be used to cool microscale devices. They function much like their conventional counterparts, with a few exceptions, most notably the absence of a wick. It is expected that water-filled micro heat pipes will be able to dissipate heat fluxes on the order of 10-15 W/cm 1 (100,000-150,000 W/m 2 ). This work addresses the modeling of a micro heat pipe operating under steady-state conditions. A one-dimensional model of the evaporator and adiabatic sections is developed and solved numerically to yield pressure, velocity, and film thickness information along the length of the pipe. Interfacial and vapor shear stress terms have been included in the model. Convection and body force terms have also been included in the momentum equation, although numerical experiments have shown them to be negligible. Pressure, velocity, and film thickness results are presented along with the maximum heat load dependence on pipe length and width. Both simple scaling and the model results show that the maximum heat transport capability of a micro heat pipe varies with the inverse of its length and the cube of its hydraulic diameter, implying the largest, shortest pipes possible should be used.
The phase-down of hydrofluorocarbons and substitution with low global warming potential values are consequences of the awareness about the environmental impacts of greenhouse gases. This theoretical study evaluated the energy and exergy performances and the environmental impact of three vapor compression system configurations operating with the hydrocarbons R290, R600a, and R1270 as alternatives to R134a. The refrigeration cycle configurations investigated in this study include a single-stage cycle, a cycle equipped with an internal heat exchanger, and a two-stage cycle with vapor injection. According to the results, the alternative hydrocarbon refrigerants could provide comparable system performance to R134a. The analysis results also revealed that using an internal heat exchanger or a flash tank vapor injection could improve the system’s efficiency while decreasing the heating capacity. The most efficient configuration was the two-stage refrigeration cycle with vapor injection, as revealed by the exergy analysis. The environmental impact analysis indicated that the utilization of environmentally-friendly refrigerants and improving the refrigeration system’s efficiency could mitigate equivalent CO2 emissions significantly. The utilization of hydrocarbons reduced the carbon footprint by 50%, while a 1% to 8% reduction could be achieved using the internal heat exchanger and flash tank vapor injection.
This study provides a global warming impact analysis of environmentally friendly refrigerants used as replacements for R134a and R245fa. R290, R1234yf, R1234ze(E), R513A and R450A are considered as refrigerants to replace R134a in medium temperature applications. For R245fa, there are five alternative refrigerants, R1224yd(Z), R600, R1336mzz(Z), R1233zd(E) and R1234ze(Z), which are selected for high-temperature applications. The analysis is done considering the emission factors in Brazil, Sweden, Canada and Poland. In Sweden and Brazil, the total equivalent warming impact per heating capacity of R134a is higher than its alternative refrigerants in medium temperature application, although R134a exhibits a higher coefficient of performance than its alternatives. In high-temperature applications, R1336mzz(Z) has the lowest total equivalent warming impact per heating capacity due to its higher coefficient of performance than other tested refrigerants. The highest total equivalent warming impact per heating capacity belongs to R245fa in all countries except in Poland, where R600 exhibits a higher value due to its lower coefficient of performance and the relatively higher emission factor in Poland compared to other selected countries. These results revealed that in addition to the global warming potential, the emission factor associated with the sources of electricity generation has a crucial impact on indirect emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.