The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beamexpanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called 'magic condition' that preserves the divergence of the beam and enables fullfield phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable inline phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used.
The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam's position and angle, and thus infer the electron beam's position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement.
A new energy dispersive X-ray absorption spectroscopy (EDXAS) method is presented for simultaneous wide-field imaging and transmission X-ray absorption spectroscopy (XAS) to enable rapid imaging and speciation of elements. Based on spectral K-Edge Subtraction imaging (sKES), a bent Laue imaging system diffracting in the vertical plane was developed on a bend magnet beamline for selenium speciation. The high flux and small vertical focus, forming a wide horizontal line beam for projection imaging and computed tomography applications, is achieved by precise matching of lattice plane orientation and crystal surface (asymmetry angle). The condition generating a small vertical focus for imaging also provides good energy dispersion. Details for achieving sufficient energy and spatial resolution are demonstrated for both full field imaging and computed tomography in quantifying selenium chemical species. While this system has lower sensitivity as it uses transmission and may lack the flux and spatial resolution of a dedicated focused beamline system, it has significant potential in rapid screening of heterogeneous biomedical or environmental systems to correlate metal speciation with function.
A bent Laue beam-expanding double-crystal monochromator was developed and tested at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The expander will reduce scanning time for micro-computed tomography and allow dynamic imaging that has not previously been possible at this beamline.
The study critically considers the effect of forensic accounting and litigation support on fraud detection in Nigerian companies. The objective of this study is to predispose if forensic accounting and litigation support have any significant effect on fraud detection in Nigeria companies. In order to actualize this objective, data were sourced for through primary sources and this was achieved with the help organized questionnaires of two segments administered to the employees of Zenith Bank Nigeria Plc. and Union Bank Nigeria Plc. in Calabar, Cross River State. The data collected were presented with the help of tables and interpreted with the help of inferential statistics using Analysis of Variance (ANOVA). The study revealed that forensic accounting and litigation supports do not have significant effect on fraud detection in Nigerian companies. It was recommended that Management and Shareholders should be educated on the usefulness of the services of forensic accountants in litigation matters and that Nigeria legal system should be strengthened, so that it can lend credibility or confidence in their legal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.