Due to their low density, natural fibers have increasingly found application in the development of systems such as wind turbine blades, airplane wing spar where flexural strength is a strong criterion for material selection. Although different researchers have studied the mechanical properties of such natural fiber composites, none has focused on the optimization of the flexural strength of pineapple leaf fiber (PALF)/glass fiber (GF) reinforced epoxy hybrid composite. This study applied the Taguchi and general regression analysis method in the optimization and modeling of the flexural strength of the P x G y E z composite. Flexural strength of 144.5 MPa at an optimum development parameter of PALF at 20% volume content, GF at 20% volume content, and fiber length of 25 mm. Analysis of variance and regression analysis was also employed to describe and model the flexural behavior of the developed composite. The PALF fiber showed to have a higher contribution to the flexural strength of the material. The equation developed to model the flexural behavior of the material showed a good correlation between the simulated value and the experimental values of the flexural strength at different combinations of manufacturing parameters.
The chemical treatment of natural fibres for its surface modification for the development of polymer composites is popular but it comes with an adverse effect of a chemical change of the fibres. In this study, the surface modification of natural fibres (doum palm nut fibres) with low-temperature heat treatment (30℃-75℃) has been reported as an alternative method to the treatment of natural fibres for the development of polymer composites. Taguchi method of the design of experiment was employed to determine the effect of temperature and fibre content on the mechanical properties (hardness and fracture toughness) of doum palm nut fibre-reinforced phenolic resin polymer composite. The process showed that the best combination of fibre content and fibre treatment temperature for optimum hardness and fracture toughness and results proved to be at 5% and 75℃ respectively. Statistical analysis established the significance of heat treatment in improving the fracture toughness of doum palm nut fibre reinforced phenolic resin composites. Physical observation with SEM and FTIR confirmed the improvement in interfacial bonding between the fibre and the matrix with the increase in fibre treatment temperature without a change in the chemical properties of the treated fibres. The study concludes that the treatment of fibres with temperature is an alternative and effective method to the chemical treatment.
This study was aimed at optimizing the development parameters of a glass fiber reinforced epoxy composite for pipeline application. In this study, the Taguchi experimental design technique was applied to determine the best combination of process parameters (fiber content and orientation) for optimum tensile strength. The optimum tensile strength of 209.65MPa was reported at the fiber content of 50% and Fiber orientation of 45º. Analysis of variance also showed that in optimizing for high tensile strength, the glass fiber content and the fiber orientation are significant factors. The material at optimum tensile properties was applied in the simulation of the behavior of a high-pressured gas pipeline and results proved the reliability of the material in such application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.