IMPORTANCEThe effects of chlorhexidine (CHX) mouthwash, selective oropharyngeal decontamination (SOD), and selective digestive tract decontamination (SDD) on patient outcomes in ICUs with moderate to high levels of antibiotic resistance are unknown. OBJECTIVETo determine associations between CHX 2%, SOD, and SDD and the occurrence of ICU-acquired bloodstream infections with multidrug-resistant gram-negative bacteria (MDRGNB) and 28-day mortality in ICUs with moderate to high levels of antibiotic resistance. DESIGN, SETTING, AND PARTICIPANTS Randomized trial conducted from December 1, 2013, to May 31, 2017 European ICUs where at least 5% of bloodstream infections are caused by extendedspectrumβ-lactamase-producingEnterobacteriaceae.Patientswithanticipatedmechanicalventilation of more than 24 hours were eligible. The final date of follow-up was September 20, 2017.INTERVENTIONS Standard care was daily CHX 2% body washings and a hand hygiene improvement program. Following a baseline period from 6 to 14 months, each ICU was assigned in random order to 3 separate 6-month intervention periods with either CHX 2% mouthwash, SOD (mouthpaste with colistin, tobramycin, and nystatin), or SDD (the same mouthpaste and gastrointestinal suspension with the same antibiotics), all applied 4 times daily. MAIN OUTCOMES AND MEASURESThe occurrence of ICU-acquired bloodstream infection with MDRGNB (primary outcome) and 28-day mortality (secondary outcome) during each intervention period compared with the baseline period. RESULTS A total of 8665 patients (median age, 64.1 years; 5561 men [64.2%]) were included in the study (2251, 2108, 2224, and 2082 in the baseline, CHX, SOD, and SDD periods, respectively). ICU-acquired bloodstream infection with MDRGNB occurred among 144 patients (154 episodes) in 2.1%, 1.8%, 1.5%, and 1.2% of included patients during the baseline, CHX, SOD, and SDD periods, respectively. Absolute risk reductions were 0.3% (95% CI, −0.6% to 1.1%), 0.6% (95% CI, −0.2% to 1.4%), and 0.8% (95% CI, 0.1% to 1.6%) for CHX, SOD, and SDD, respectively, compared with baseline. Adjusted hazard ratios were 1.13 (95% CI, 0.68-1.88), 0.89 (95% CI, 0.55-1.45), and 0.70 (95% CI, 0.43-1.14) during the CHX, SOD, and SDD periods, respectively, vs baseline. Crude mortality risks on day 28 were 31.9%, 32.9%, 32.4%, and 34.1% during the baseline, CHX, SOD, and SDD periods, respectively. Adjusted odds ratios for 28-day mortality were 1.07 (95% CI, 0.86-1.32), 1.05 (95% CI, 0.85-1.29), and 1.03 (95% CI, 0.80-1.32) for CHX, SOD, and SDD, respectively, vs baseline. CONCLUSIONS AND RELEVANCE Among patients receiving mechanical ventilation in ICUs with moderate to high antibiotic resistance prevalence, use of CHX mouthwash, SOD, or SDD was not associated with reductions in ICU-acquired bloodstream infections caused by MDRGNB compared with standard care.
Laryngeal edema is a frequent complication of intubation. It often presents shortly after extubation as post-extubation stridor and results from damage to the mucosa of the larynx. Mucosal damage is caused by pressure and ischemia resulting in an inflammatory response. Laryngeal edema may compromise the airway necessitating reintubation. Several studies show that a positive cuff leak test combined with the presence of risk factors can identify patients with increased risk for laryngeal edema. Meta-analyses show that pre-emptive administration of a multiple-dose regimen of glucocorticosteroids can reduce the incidence of laryngeal edema and subsequent reintubation. If post-extubation edema occurs this may necessitate medical intervention. Parenteral administration of corticosteroids, epinephrine nebulization and inhalation of a helium/oxygen mixture are potentially effective, although this has not been confirmed by randomized controlled trials. The use of non-invasive positive pressure ventilation is not indicated since this will delay reintubation. Reintubation should be considered early after onset of laryngeal edema to adequately secure an airway. Reintubation leads to increased cost, morbidity and mortality.
Endotracheal intubation is frequently complicated by laryngeal edema, which may present as postextubation stridor or respiratory difficulty or both. Ultimately, postextubation laryngeal edema may result in respiratory failure with subsequent reintubation. Risk factors for postextubation laryngeal edema include female gender, large tube size, and prolonged intubation. Although patients at low risk for postextubation respiratory insufficiency due to laryngeal edema can be identified by the cuff leak test or laryngeal ultrasound, no reliable test for the identification of high-risk patients is currently available. If applied in a timely manner, intravenous or nebulized corticosteroids can prevent postextubation laryngeal edema; however, the inability to identify high-risk patients prevents the targeted pretreatment of these patients. Therefore, the decision to start corticosteroids should be made on an individual basis and on the basis of the outcome of the cuff leak test and additional risk factors. The preferential treatment of postextubation laryngeal edema consists of intravenous or nebulized corticosteroids combined with nebulized epinephrine, although no data on the optimal treatment algorithm are available. In the presence of respiratory failure, reintubation should be performed without delay. Application of noninvasive ventilation or inhalation of a helium/oxygen mixture is not indicated since it does not improve outcome and increases the delay to intubation.
Gram-negative rectal colonization tends to be stronger associated with subsequent ICU-acquired gram-negative infections than gram-negative respiratory tract colonization. Gram-negative rectal colonization seems hardly associated with subsequent ICU-acquired gram-negative respiratory tract colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.