Transesophageal echocardiography is recommended to monitor left ventricular (LV) size and function in various operations. Generally, two-dimensional (2D) methods are applied intraoperatively. The aim of this study was to compare the accuracy and feasibility of 6 commonly used 2D methods to assess LV function during surgery. LV function in 120 consecutive patients was evaluated. Real time three-dimensional transesophageal echocardiograpy (3DTEE) served as reference. End-diastolic and end-systolic volumes and ejection fraction (EF) were analyzed with Simpson's method of discs (monoplane [MP] and biplane [BP]), eyeball method, Teichholz' method, and speckle tracking (ST) methods. Furthermore, fractional area change (FAC) and peak systolic pressure rise (dP/dt) were determined. Each 2D method was evaluated regarding correlation and agreement with 3DE, intra- and interobserver variability and the time required for evaluation. Simpson BP showed the strongest correlation and best agreement with 3DE for EF (limits of agreement 3.7 ± 11.6%) and volumes. Simpson MP showed similar agreement with 3DE compared to ST (2.8 ± 14.5% vs. 2.0 ± 15.3% and 3.8 ± 14.4% vs. 1.9 ± 15.6%, respectively). Both the eyeball method and Teichholz' method showed wide limits of agreement (-1.5 ± 18.2% and 5.2 ± 22.1%, respectively). DP/dt did not correlate with 3DE. FAC and ST FAC showed similar agreement. Application of 3DE (429 ± 108 seconds) took the longest time, and the eyeball method took the shortest time (8 ± 5 seconds) for analysis. Simpson BP is the most accurate intraoperative 2D method to evaluate LV function, followed by long-axis MP evaluations. Short-axis views were less accurate but may be suited for monitoring. We do not recommend using dP/dt.
Background Hepatectomy, living donor liver transplantations and other major hepatic interventions rely on precise calculation of the total, remnant and graft liver volume. However, liver volume might differ between the pre- and intraoperative situation. To model liver volume changes and develop and validate such pre- and intraoperative assistance systems, exact information about the influence of lung ventilation and intraoperative surgical state on liver volume is essential. Methods This study assessed the effects of respiratory phase, pneumoperitoneum for laparoscopy, and laparotomy on liver volume in a live porcine model. Nine CT scans were conducted per pig (N = 10), each for all possible combinations of the three operative (native, pneumoperitoneum and laparotomy) and respiratory states (expiration, middle inspiration and deep inspiration). Manual segmentations of the liver were generated and converted to a mesh model, and the corresponding liver volumes were calculated. Results With pneumoperitoneum the liver volume decreased on average by 13.2% (112.7 ml ± 63.8 ml, p < 0.0001) and after laparotomy by 7.3% (62.0 ml ± 65.7 ml, p = 0.0001) compared to native state. From expiration to middle inspiration the liver volume increased on average by 4.1% (31.1 ml ± 55.8 ml, p = 0.166) and from expiration to deep inspiration by 7.2% (54.7 ml ± 51.8 ml, p = 0.007). Conclusions Considerable changes in liver volume change were caused by pneumoperitoneum, laparotomy and respiration. These findings provide knowledge for the refinement of available preoperative simulation and operation planning and help to adjust preoperative imaging parameters to best suit the intraoperative situation.
BackgroundRing sizing for mitral valve annuloplasty is conventionally done intraoperatively using specific ‘sizer’ instruments, which are placed onto the valve tissue. This approach is barely reproducible since different sizing strategies have been established among surgeons. The goal of this study is to virtually apply different sizing methods on the basis of pre-repair echocardiography to find out basic differences between sizing strategies.MethodsIn three-dimensional echocardiographs of 43 patients, the mitral annulus and the contour of the anterior mitral leaflet were segmented using MITK Mitralyzer software. Similarly, three-dimensional virtual models of Carpentier-Edwards Physio II annuloplasty rings and their corresponding sizers were interactively generated from computer tomography images. For each patient, the matching annuloplasty ring was selected repeatedly according to popular sizing strategies, such as the height of anterior mitral leaflet, the intercommissural distance and the surface area of anterior mitral leaflet. The areas of the selected rings were considered as the neo-surface area of the mitral annulus after implantation.ResultsThe sizing of the mitral valve according to the height of anterior mitral leaflet (mean ring size = 29.9 ± 3.90), intercommissural distance (mean ring size = 37.5 ± 1.92) or surface area of anterior mitral leaflet (mean ring size = 32.7 ± 3.3) led to significantly different measurements (p ≤ 0.01). In contrary to intercommissural distance, height and surface area of the anterior mitral leaflet exhibited significant variations between the patients (p ≤ 0.01). The sizing according to the height of anterior mitral leaflet led to the maximal reduction of the mitral annulus surface area followed by the sizing according to the surface area of anterior mitral leaflet and finally by the intercommissural distance.ConclusionsThis novel comprehensive computer-based analysis reveals that the surveyed sizing methods led to the selection of significantly different annuloplasty rings and therefore underscore the ambiguity of routinely applied annuloplasty sizing strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13019-017-0571-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.