We investigated the changes in gene expression accompanying the development and progression of kidney cancer by use of 31,500-element complementary DNA arrays. We measured expression profiles for paired neoplastic and noncancerous renal epithelium samples from 37 individuals. Using an experimental design optimized for factoring out technological and biological noise, and an adapted statistical test, we found 1738 differentially expressed cDNAs with an expected number of six false positives. Functional annotation of these genes provided views of the changes in the activities of specific biological pathways in renal cancer. Cell adhesion, signal transduction, and nucleotide metabolism were among the biological processes with a large proportion of genes overexpressed in renal cell carcinoma. Down-regulated pathways in the kidney tumor cells included small molecule transport, ion homeostasis, and oxygen and radical metabolism. Our expression profiling data uncovered gene expression changes shared with other epithelial tumors, as well as a unique signature for renal cell carcinoma. [Expression data for the differentially expressed cDNAs are available as a Web supplement at http://www.dkfz-heidelberg.de/abt0840/whuber/rcc.]
We conclude that CT is not due to SDH-inactivating or KIT- and PDGFRA-activating mutations. GISTs and PGLs in CT are associated with chromosome 1 and other changes that appear to participate in tumor progression and point to their common genetic cause.
To model the cytogenetic evolution in gastrointestinal stromal tumour (GIST), an oncogenetic tree model was reconstructed using comparative genomic hybridization data from 203 primary GISTs (116 gastric and 87 intestinal GISTs, including 151 newly analysed cases), with follow-up available in 173 cases (mean 40 months; maximum 133 months). The oncogenetic tree model identified three major cytogenetic pathways: one initiated by -14q, one by -1p, and another by -22q. The -14q pathway mainly characterized gastric tumours with predominantly stable karyotypes and more favourable clinical course. On the other hand, the -1p pathway was more characteristic of intestinal GISTs, with an increased capacity for cytogenetic complexity and more aggressive clinical course. Loss of 22q, more closely associated with -1p than -14q, appeared to initiate the critical transition to an unfavourable cytogenetic subpathway. This -22q pathway included accumulation of +8q, -9p, and -9q, which could all predict disease-free survival in addition to tumour site. Thus, insights into the cytogenetic evolution obtained from oncogenetic tree models may eventually help to gain a better understanding of the heterogeneous site-dependent biological behaviour of GISTs.
Complete surgical resection is the most important means of cure for GISTs. DNA copy number changes are related to the behaviour of these tumours and may serve as additional prognostic markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.