Fluorescence diagnosis may be used to improve the safety and reliability of stereotactic brain tumor biopsies using biopsy needles with integrated fiber optics. Based on 5-aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence, vital tumor tissue can be localized in-vivo during the excision procedure to reduce the number of necessary samples for a reliable diagnosis.In this study, the practical suitability of two different PpIX excitation wavelengths (405 nm, 633 nm) was investigated on optical phantoms. Violet excitation at 405 nm provides a 50-fold higher sensitivity for the bulk tumor; this factor increases up to 100 with decreasing fluorescent volume as shown by ray tracing simulations. Red excitation at 633 nm, however, is noticeably superior with regard to blood layers obscuring the fluorescence. Experimental results on the signal attenuation through blood layers of well-defined thicknesses could be confirmed by ray tracing simulations. Typical interstitial fiber probe measurements were mimicked on agarose-gel phantoms. Even in direct contact, blood layers of 20 -40 µm between probe and tissue must be expected, obscuring 405-nm-excited PpIX fluorescence almost completely, but reducing the 633-nm-excited signal only by 25.5%. Thus, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of highgrade gliomas in stereotactic biopsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.