A palladium-catalyzed asymmetric three-component synthesis of α-arylglycine derivatives starting from glyoxylic acid, sulfonamides and arylboronic acids is reported. This novel, operationally simple method offers access to the α-arylglycine scaffold in good yields and enantioselectivities. The utilization of α tailored catalyst system enables the enantioselective synthesis of the desired α-arylglycines despite a fast racemic background reaction. The obtained products can be directly employed as building blocks in peptide synthesis.
The formation of CÀ C-bonds constitutes one of the most fundamental synthetic operations in organic chemistry. The nucleophilic addition of preformed organometallic reagents to an electrophilic carbonyl functionality represents a classical method for the selective construction of a CÀ C-bond. However, the synthesis and utilization of an organometallic reagent is associated with an unfavorable environmental profile. Herein, we disclose a Palladium-catalyzed decarboxylative 1,2-addition of carboxylic acids to glyoxylic acid esters. This novel method provides access to the mandelic acid scaffold in good yields. Easy-to-handle and readily available benzoic acids are utilized as more sustainable alternative to preformed organometallic nucleophiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.