SummaryWe report on the electronic transport through nanoscopic metallic contacts under the influence of external light fields. Various processes can be of relevance here, whose underlying mechanisms can be studied by comparing different kinds of atomic contacts. For this purpose two kinds of contacts, which were established by electrochemical deposition, forming a gate-controlled quantum switch (GCQS), have been studied. We demonstrate that in these kinds of contacts thermal effects resulting from local heating due to the incident light, namely thermovoltage and the temperature dependences of the electrical resistivity and the electrochemical (Helmholtz) double layer are the most prominent effects.
SummaryWe report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = −ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature.
Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are severe, potentially life-threatening side effects of chimeric antigen receptor T-cell (CAR T) therapy caused by the release of cytokines by proliferating and activated CAR T-cells. Current mainstay treatment includes interleukin-1 and interleukin-6 (IL-6) blockade and steroids. The use of steroids is still controversial, since they may have the potential to irreversibly damage CAR T-cells and thus increase the risk of relapse. Therefore, additional treatment options need to be explored. We report the successful treatment of a patient with a grade 3 CRS and grade 4 ICANS refractory to IL-6 blockade and steroids with the tyrosine kinase inhibitor dasatinib. The use of dasatinib for treatment of CAR T-cell therapy-related severe complications warrants further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.