Liquid-liquid phase separation in giant unilamellar vesicles (GUVs) leads to the formation of intramembrane domains. To mimic charged biological membranes, we studied phase separation and domain formation in GUVs of ternary lipid mixtures composed of egg sphingomyelin, cholesterol, and the negatively charged lipid dioleoylphosphatidylglycerol. The GUVs were exposed to solutions of sucrose and high-saline buffer. The phase diagram was determined using epifluorescence microscopy for vesicle populations with symmetric and asymmetric solution compositions across the membranes. Trans-membrane solution asymmetry was found to affect the membrane phase state. Furthermore, compared to the case of salt-free conditions, the phase diagram in the presence of high-saline buffer (both symmetrically or asymmetrically present across the membrane) was found to exhibit a significantly extended region of liquid-ordered and liquid-disordered coexistence. These observations were confirmed on single GUVs using microfluidics and confocal microscopy. Moreover, we found that the miscibility temperatures markedly increased for vesicles in the presence of symmetric and asymmetric salt solutions. Our results demonstrate a substantial effect of salt and solution asymmetry on the phase behavior of charged membranes, which has direct implications for protein adsorption onto these membranes and for the repartitioning of proteins within the membrane domains.
Background: NhaA of Escherichia coli can serve as an example for pH regulation and transport mechanism in Na+/H+ exchangers.Results: Different mutations alter Na+ and/or H+ binding or conformational dynamics.Conclusion: Mutations in different segments of the protein change its pH profile by affecting different aspects of its transport mechanism.Significance: Single site mutations and kinetic analysis reveal determinants of Na+/H+ exchanger mechanism.
Phase-separated giant unilamellar vesicles (GUVs) exhibiting coexisting liquid-ordered and liquid-disordered domains are a common biophysical tool to investigate the lipid raft hypothesis. Numerous studies, however, neglect the impact of physiological solution conditions. On that account, the current work presents the effect of high-salinity buffer and trans-membrane solution asymmetry on liquid-liquid phase separation in charged GUVs grown from dioleylphosphatidylglycerol, egg sphingomyelin, and cholesterol. The effects were studied under isothermal and varying temperature conditions.We describe equipment and experimental strategies applicable for monitoring the stability of coexisting liquid domains in charged vesicles under symmetric and asymmetric high-salinity solution conditions. This includes an approach to prepare charged multicomponent GUVs in high-salinity buffer at high temperatures. The protocol entails the option to perform a partial exchange of the external solution by a simple dilution step while minimizing the vesicle dilution. An alternative approach is presented utilizing a microfluidic device that allows for a complete external solution exchange. The solution effects on phase separation were also studied under varying temperatures. To this end, we present the basic design and utility of an in-house built temperature control chamber. Furthermore, we reflect on the assessment of the GUV phase state, pitfalls associated with it and how to circumvent them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.