Accurate environment perception is essential for automated vehicles. Since occlusions and inaccuracies regularly occur, the exchange and combination of perception data of multiple vehicles seems promising. This paper describes a method to combine perception data of automated and connected vehicles in the form of evidential Dynamic Occupany Grid Maps (DOGMas) in a cloud-based system. This system is called the Collective Environment Model and is part of the cloud system developed in the project UNICARagil. The presented concept extends existing approaches that fuse evidential grid maps representing static environments of a single vehicle to evidential grid maps computed by multiple vehicles in dynamic environments. The developed fusion process additionally incorporates self-reported data provided by connected vehicles instead of only relying on perception data. We show that the uncertainty in a DOGMa described by Shannon entropy as well as the uncertainty described by a non-specificity measure can be reduced. This enables automated and connected vehicles to behave in ways not before possible due to unknown but relevant information about the environment. *This research is accomplished within the project "UNICARagil" (FKZ 16EMO0289). We acknowledge the financial support for the project by the Federal Ministry of Education and Research of Germany (BMBF).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.