BackgroundIn the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past.ResultsOur analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position.ConclusionsConfidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of Lamiales.
Carnivorous Lentibulariaceae exhibit the most sophisticated implementation of the carnivorous syndrome in plants. Their unusual lifestyle coincides with distinct genomic peculiarities such as the smallest angiosperm nuclear genomes and extremely high nucleotide substitution rates across all genomic compartments. Here, we report the complete plastid genomes from each of the three genera Pinguicula, Utricularia, and Genlisea, and investigate plastome-wide changes in their molecular evolution as the carnivorous syndrome unfolds. We observe a size reduction by up to 9% mostly due to the independent loss of genes for the plastid NAD(P)H dehydrogenase and altered proportions of plastid repeat DNA, as well as a significant plastome-wide increase of substitution rates and microstructural changes. Protein-coding genes across all gene classes show a disproportional elevation of nonsynonymous substitutions, particularly in Utricularia and Genlisea. Significant relaxation of purifying selection relative to noncarnivores occurs in the plastid-encoded fraction of the photosynthesis ATP synthase complex, the photosystem I, and in several other photosynthesis and metabolic genes. Shifts in selective regimes also affect housekeeping genes including the plastid-encoded polymerase, for which evidence for relaxed purifying selection was found once during the transition to carnivory, and a second time during the diversification of the family. Lentibulariaceae significantly exhibit enhanced rates of nucleotide substitution in most of the 130 noncoding regions. Various factors may underlie the observed patterns of relaxation of purifying selection and substitution rate increases, such as reduced net photosynthesis rates, alternative paths of nutrient uptake (including organic carbon), and impaired DNA repair mechanisms.
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/page/terms_of_use.Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. the recently described Linderniaceae are a monophyletic group that emerged in the course of the disintegration of the Scrophulariaceae in the last years. First molecular studies sampled only a small fraction of the genera assigned to the Linderniaceae, but later Lindernia was shown to be non-monophyletic. here we used a plastid trnK/matK sequence dataset to get further insights into the relationships within Linderniaceae. the genus Lindernia as accepted to date is shown to be polyphyletic. Stemodiopsis is found to be sister to the remaining Linderniaceae, and the genera Psammetes and Bryodes are found to be nested in a Lindernia s.str. clade. We present a taxonomic framework, taking account of the phylogenetic relationships in the family, and a first key to the genera. the genera
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.