The large carbon footprint of the Haber–Bosch process, which provides ammonia for fertilizers but also the feedstock for all nitrogenous commercial products, has fueled the quest for alternative synthetic strategies to nitrogen fixation. Owing to the extraordinarily strong NN triple bond, the key step of the Haber–Bosch reaction, i.e., the dissociative adsorption of N2, requires high temperatures. Since the first report in 1995, a wide variety of molecular transition metal and f-block compounds have been reported that can fully cleave N2 at ambient conditions and form well-defined nitrido complexes. We here provide a comprehensive survey of the current state of N2 splitting reactions in solution and follow-up nitrogen transfer reactivity. Particular emphasis is put on electronic structure requirements for the formation of suitable molecular precursors and their N–N scission reactivity. The prospects of N2 splitting for the synthesis of nitrogen containing products will be discussed, ranging from ammonia and heterocumulenes to organic amines, amides or nitriles via proton coupled electron transfer, carbonylation, or electrophilic functionalization of N2 derived nitrido complexes. Accomplishments and challenges for nitrogen fixation via N2 splitting are presented to offer guidelines for the development of catalytic platforms.
The coupling of electron- and proton-transfer steps provides a general concept to control the driving force of redox reactions. N splitting of a molybdenum dinitrogen complex into nitrides coupled to a reaction with Brønsted acid is reported. Remarkably, our spectroscopic, kinetic, and computational mechanistic analysis attributes N-N bond cleavage to protonation in the periphery of an amide pincer ligands rather than the {Mo-N -Mo} core. The strong effect on electronic structure and ultimately the thermochemistry and kinetic barrier of N-N bond cleavage is an unusual case of a proton-coupled metal-to-ligand charge transfer process, highlighting the use of proton-responsive ligands for nitrogen fixation.
A series of square-planar cobalt(II) complexes with pincer ligands {N(CH2CH2PtBu2)2}(-) ({L1(tBu)}(-)), {N(CH2CH2PtBu2)(CHCHPtBu2)}(-) ({L2(tBu)}(-)), and {N(CHCHPtBu2)2}(-) ({L3(tBu)}(-)) was synthesized. Ligand dehydrogenation was accomplished with a new, high-yield protocol that employs the 2,4,6-tri-tert-butylphenoxy radical as hydrogen acceptor. [CoCl{Ln(tBu)}] (n = 1-3) were examined with respect to reduction, protonation, and oxidation, respectively. One-electron oxidations of [CoCl(L1(tBu))] and [CoCl(L2(tBu))] lead to ligand-centered radical reactivity, like amide disproportionation into cobalt(II) amine and imine complexes. In contrast, oxidation of [CoCl{L3(tBu)}] with Ag(+) enabled the isolation of thermally stable, square-planar cobalt(III) complex [CoCl{L3(tBu)}](+), which adopts an intermediate-spin (S = 1) ground state with large magnetic anisotropy. Hence, pincer dehydrogenation gives access to a new platform for high-valent cobalt in square-planar geometry.
An N2-bridged ditungsten complex is presented that undergoes N2-splitting or hydrogen evolution upon protonation depending on the acid and reaction conditions. Spectroscopic, kinetic and computational results emphasize the impact of hydrogen bonding on the reaction selectivity.
Light-driven N 2 cleavage into molecular nitrides is an attractive strategy for synthetic nitrogen fixation. However, suitable platforms are rare. Furthermore, the development of catalytic protocols via this elementary step suffers from poor understanding of N–N photosplitting within dinitrogen complexes, as well as of the thermochemical and kinetic framework for coupled follow-up chemistry. We here present a tungsten pincer platform, which undergoes fully reversible, thermal N 2 splitting and reverse nitride coupling, allowing for experimental derivation of thermodynamic and kinetic parameters of the N–N cleavage step. Selective N–N splitting was also obtained photolytically. DFT computations allocate the productive excitations within the {WNNW} core. Transient absorption spectroscopy shows ultrafast repopulation of the electronic ground state. Comparison with ground-state kinetics and resonance Raman data support a pathway for N–N photosplitting via a nonstatistically vibrationally excited ground state that benefits from vibronically coupled structural distortion of the core. Nitride carbonylation and release are demonstrated within a full synthetic cycle for trimethylsilylcyanate formation directly from N 2 and CO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.