Diverse Polycomb repressive complexes 1 (PRC1) play essential roles in gene regulation, differentiation and development. Six major groups of PRC1 complexes that differ in their subunit composition have been identified in mammals. How the different PRC1 complexes are recruited to specific genomic sites is poorly understood. The Polycomb Ring finger protein PCGF6, the transcription factors MGA and E2F6, and the histone-binding protein L3MBTL2 are specific components of the non-canonical PRC1.6 complex. In this study, we have investigated their role in genomic targeting of PRC1.6. ChIP-seq analysis revealed colocalization of MGA, L3MBTL2, E2F6 and PCGF6 genome-wide. Ablation of MGA in a human cell line by CRISPR/Cas resulted in complete loss of PRC1.6 binding. Rescue experiments revealed that MGA recruits PRC1.6 to specific loci both by DNA binding-dependent and by DNA binding-independent mechanisms. Depletion of L3MBTL2 and E2F6 but not of PCGF6 resulted in differential, locus-specific loss of PRC1.6 binding illustrating that different subunits mediate PRC1.6 loading to distinct sets of promoters. Mga, L3mbtl2 and Pcgf6 colocalize also in mouse embryonic stem cells, where PRC1.6 has been linked to repression of germ cell-related genes. Our findings unveil strikingly different genomic recruitment mechanisms of the non-canonical PRC1.6 complex, which specify its cell type- and context-specific regulatory functions.
SUMO modification of many transcription factors is linked to transcriptional repression. The molecular mechanisms by which SUMO attachment represses transcription are largely unknown. Here we report a genome-wide RNA interference screen in Drosophila melanogaster cells for components regulating and mediating SUMO-dependent transcriptional repression. Analysis of >21,000 double-stranded RNAs (dsRNAs) identified 120 genes whose dsRNA-mediated knockdowns impaired SUMO-dependent transcriptional repression. Several of these genes encode chromatin-associated proteins, including the ATP-dependent chromatin remodeler Mi-2, the D. melanogaster ortholog of the C. elegans protein MEP-1, and the polycomb protein Sfmbt. Knockdown of these proteins did not impair SUMO conjugation, demonstrating that they act downstream of SUMO attachment. Biochemical analyses revealed that MEP-1, Mi-2, and Sfmbt interact with each other, bind to SUMO, and are recruited to promoters in a SUMOylation-dependent manner. Our results suggest that MEP-1, Mi-2, and Sfmbt are part of a common repression complex established by DNA-bound SUMO-modified transcription factors.
Modification of many transcription factors including Sp3 and steroidogenic factor 1 with the small ubiquitin-like modifier (SUMO) is associated with transcriptional repression. Here, we show that SUMOylation of transcription factors bound to DNA provokes the establishment of compacted repressive chromatin with characteristics of heterochromatin. Chromatin immunoprecipitation experiments revealed SUMO-dependent recruitment of the chromatin remodeller Mi-2, MBT-domain proteins, heterochromatic protein 1, and the histone methyltransferases SETDB1 and SUV4-20H, concomitant with the establishment of histone modifications associated with repressed genes, including H3K9 and H4K20 trimethylation. These results indicate that SUMOylation has a crucial role in regulating gene expression by initiating chromatin structure changes that render DNA inaccessible to the transcription machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.