The phylogenetic relationships of the Fungiidae, a family of predominantly free-living, zooxanthellate, reef corals, were studied by sequencing a part of the mitochondrial Cytochrome Oxidase I (COI) and the complete ribosomal Internal Transcribed Spacers (ITS) I & II of specimens from various locations in the Indo-West Pacific. Some sequences were retrieved by using fungiidspecific primers on DNA-extracts from parasitic gastropods living with these corals. The analyses were performed both including and excluding intraspecific variation to investigate the potential effect of saturation. Even though the present molecular phylogeny reconstructions largely reflect those based on morphological characters, there are some distinct differences. Three major clades are distinguished, one of which consists of species with relatively long tentacles. The two other major clades cannot yet be clearly separated from each other morphologically. Several polyphyletic taxa were detected and some genera and species that previously were considered closely related to each other, appear not to be so. Proposed nomenclatorial changes include amongst others the upgrading of subgenera in Fungia to genus level. A few species moved from one genus to another. Among all Fungiidae, the loss of the ability to become free-living appears to have evolved independently as reversals in four separate clades, including two that were previously assumed to be sister groups. The evolution of corals with additional (secondary) mouths leading to polystomatous growth forms from corals with only a single primary mouth (monostomatous growth form) appears to have occurred independently ten times: seven times by extrastomatal budding and three times by intrastomatal budding. In two clades, Herpolitha and Polyphyllia, both mechanisms co-evolved. In general there is no clear relationship between the loss of a freeliving phase and the evolution of multiple mouths.
IntroductionThe major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid of species distribution modeling and phylogeographical analyses. We test the responses of the different members of the genus Triturus (i.e. the marbled and crested newts) as the climate shifted from the previous glacial period (the Last Glacial Maximum, ~21 Ka) to the current interglacial.ResultsWe present the results of a dense mitochondrial DNA phylogeography (visualizing genetic diversity within and divergence among populations) and species distribution modeling (using two different climate simulations) for the nine Triturus species on composite maps.ConclusionsThe combined use of species distribution modeling and mitochondrial phylogeography provides insight in the glacial contraction and postglacial expansion of Triturus. The combined use of the two independent techniques yields a more complete understanding of the historical biogeography of Triturus than both approaches would on their own. Triturus newts generally conform to the ‘southern richness and northern purity’ paradigm, but we also find more intricate patterns, such as the absence of genetic variation and suitable area at the Last Glacial Maximum (T. dobrogicus), an ‘extra-Mediterranean’ refugium in the Carpathian Basin (T. cristatus), and areas where species displaced one another postglacially (e.g. T. macedonicus and western T. karelinii). We provide a biogeographical scenario for Triturus, showing the positions of glacial refugia, the regions that were postglacially colonized and the areas where species displaced one another as they shifted their ranges.
The scleractinian species Psammocora explanulata and Coscinaraea wellsi were originally classified in the family Siderastreidae, but in a recent morpho-molecular study it appeared that they are more closely related to each other and to the Fungiidae than to any siderastreid taxon. A subsequent morpho-molecular study of the Fungiidae provided new insights regarding the phylogenetic relationships within that family. In the present study existing molecular data sets of both families were analyzed jointly with those of new specimens and sequences of P. explanulata and C. wellsi. The results indicate that both species actually belong to the Cycloseris clade within the family Fungiidae. A reappraisal of their morphologic characters based on museum specimens and recently collected material substantiate the molecular results. Consequently, they are renamed Cycloseris explanulata and C. wellsi. They are polystomatous and encrusting like C. mokai, another species recently added to the genus, whereas all Cycloseris species were initially thought to be monostomatous and free-living. In the light of the new findings, the taxonomy and distribution data of C. explanulata and C. wellsi have been updated and revised. Finally, the ecological implications of the evolutionary history of the three encrusting polystomatous Cycloseris species and their free-living monostomatous congeners are discussed.
Botanical and zoological collections may serve as archives for historical ecological research on the effects of global change and human impact on coral reef biota. Museum collections may harbour old specimens of reef‐dwelling species that have become locally extinct. Such collections also help to determine whether early records of invasive species can be obtained from times when they were not yet recognized as such. A case study (2006) involving Saba Bank, Caribbean Netherlands (former Netherlands Antilles), suggests that the coral reef fauna here may have become impoverished when compared with data obtained during an earlier expedition in 1972. However, the 1972 sampling may have been incomplete, as it was performed by professional divers who were not trained taxonomists, whereas the collecting in 2006 was done by experienced marine biologists who knew the taxa they were sampling. As Saba Bank has been under stress due to the anchoring of large vessels, and invasive species have been a potential threat as well, future studies are needed to obtain more insights into the changing reef biota of Saba Bank. Using this Saba Bank example, we want to address the importance of natural history collections as reservoirs of valuable data relevant to coral reef biodiversity studies in a time of global change. As such, these collections are still underexplored and underexploited.
Ovulid gastropods and their octocoral hosts were collected along the leeward coast of Curaçao, Netherlands Antilles. New molecular data of Caribbean and a single Atlantic species were combined with comparable data of Indo-Pacific Ovulidae and a single East-Pacific species from GenBank. Based on two DNA markers, viz. CO-I and 16S, the phylogenetic relationships among all ovulid species of which these data are available are reconstructed. The provisional results suggest a dichotomy between the Atlantic and the Indo-Pacific taxa. Fully grown Simnialena uniplicata closely resembles juvenile Cyphoma gibbosum conchologically. Cymbovula acicularis and C. bahamaensis might be synonyms. The assignments of Caribbean host species for Cyphoma gibbosum, C. signatum, Cymbovula acicularis and Simnialena uniplicata are revised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.