Inspired by crystallography, the periodic assembly of trusses into architected materials has enjoyed popularity for more than a decade and produced countless cellular structures with beneficial mechanical properties. Despite the successful and steady enrichment of the truss design space, the inverse design has remained a challenge: While predicting effective truss properties is now commonplace, efficiently identifying architectures that have homogeneous or spatially varying target properties has remained a roadblock to applications from lightweight structures to biomimetic implants. To overcome this gap, we propose a deep-learning framework, which combines neural networks with enforced physical constraints, to predict truss architectures with fully tailored anisotropic stiffness. Trained on millions of unit cells, it covers an enormous design space of topologically distinct truss lattices and accurately identifies architectures matching previously unseen stiffness responses. We demonstrate the application to patient-specific bone implants matching clinical stiffness data, and we discuss the extension to spatially graded cellular structures with locally optimal properties.
We introduce a computational framework for the topology optimization of cellular structures with spatially varying architecture, which is applied to functionally graded truss lattices under quasistatic loading. We make use of a first-order homogenization approach, which replaces the discrete truss by an effective continuum description to be treated by finite elements in a macroscale boundary value problem. By defining the local truss architecture through a set of Bravais vectors, we formulate the optimization problem with regards to the spatially varying basis vectors and demonstrate its feasibility and performance through a series of benchmark problems in 2D (though the method is sufficiently general to also apply in 3D, as discussed). Both the displacement field and the topology are continuously varying unknown fields on the macroscale, and a regularization is included for well-posedness. We argue that prior solutions obtained from aligning trusses along the directions of principal stresses are included as a special case. The outlined approach results in heterogeneous truss architectures with a smoothly varying unit cell, enabling easy fabrication with a tunable length scale (the latter avoiding the ill-posedness stemming from classical nonconvex methods without an intrinsic length scale).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.