The calcium-activated phosphatase calcineurin is regulated by a binding cofactor known as modulatory calcineurin-interacting protein (MCIP) in yeast up through mammals. The physiologic function of MCIP remains an area of ongoing investigation, because both positive and negative calcineurin regulatory effects have been reported. Here we disrupted the mcip1 and mcip2 genes in the mouse and provide multiple lines of evidence that endogenous MCIP functions as a calcineurin facilitator in vivo. Mouse embryonic fibroblasts deficient in both mcip1͞2 showed impaired activation of nuclear factor of activated T cells (NFAT), suggesting that MCIP is required for efficient calcineurin-NFAT coupling. Mice deficient in mcip1͞2 showed a dramatic impairment in cardiac hypertrophy induced by pressure overload, neuroendocrine stimulation, or exercise, similar to mice lacking calcineurin A. Moreover, simultaneous deletion of calcineurin A in the mcip1͞2-null background did not rescue impaired hypertrophic growth after pressure overload. Slow͞oxidative fiber-type switching in skeletal muscle after exercise stimulation was also impaired in mcip1͞2 mice, similar to calcineurin A-null mice. Moreover, CD4 ؉ T cells from mcip1͞2-null mice showed enhanced apoptosis that was further increased by loss of calcineurin A. Finally, mcip1͞2-null mice displayed a neurologic phenotype that was similar to calcineurin A-null mice, such as increased locomotor activity and impaired working memory. Thus, a loss-of-function analysis suggests that MCIPs serve either a permissive or facilitative function for calcineurin-NFAT signaling in vivo.heart ͉ PP2B ͉ signal transduction
MEK1, a member of the mitogen-activated protein kinase (MAPK) cascade that directly activates extracellular signal-regulated kinase (ERK), induces cardiac hypertrophy in transgenic mice. Calcineurin is a calciumregulated protein phosphatase that also functions as a positive regulator of cardiac hypertrophic growth through a direct mechanism involving activation of nuclear factor of activated T-cell (NFAT) transcription factors. Here we determined that calcineurin-NFAT and MEK1-ERK1/2 signaling pathways are interdependent in cardiomyocytes, where they directly coregulate the hypertrophic growth response. For example, genetic deletion of the calcineurin A gene reduced the hypertrophic response elicited by an activated MEK1 transgene in the heart, while inhibition of calcineurin or NFAT in cultured neonatal cardiomyocytes also blunted the hypertrophic response driven by activated MEK1. Conversely, targeted inhibition of MEK1-ERK1/2 signaling in cultured cardiomyocytes attenuated the hypertrophic growth response directed by activated calcineurin. However, targeted inhibition of MEK1-ERK1/2 signaling did not directly affect calcineurin-NFAT activation, nor was MEK1-ERK1/2 activation altered by targeted inhibition of calcineurin-NFAT. Mechanistically, we show that MEK1-ERK1/2 signaling augments NFAT transcriptional activity independent of calcineurin, independent of changes in NFAT nuclear localization, and independent of alterations in NFAT transactivation potential. In contrast, MEK1-ERK1/2 signaling enhances NFAT-dependent gene expression through an indirect mechanism involving induction of cardiac AP-1 activity, which functions as a necessary NFAT-interacting partner. As a second mechanism, MEK1-ERK1/2 and calcineurin-NFAT proteins form a complex in cardiac myocytes, resulting in direct phosphorylation of NFATc3 within its C terminus. MEK1-ERK1/2-mediated phosphorylation of NFATc3 directly augmented its DNA binding activity, while inhibition of MEK1-ERK1/2 signaling reduced NFATc3 DNA binding activity. Collectively, these results indicate that calcineurin-NFAT and MEK1-ERK1/2 pathways constitute a codependent signaling module in cardiomyocytes that coordinately regulates the growth response through two distinct mechanisms.The physiologic and pathological growth of the myocardium is typically initiated by membrane-bound receptors that promote intracellular signaling through multiple GTPase proteins, kinases, and phosphatases. One such regulator is the calciumcalmodulin-activated protein phosphatase calcineurin (PP2B) and its downstream transcriptional target, nuclear factor of activated T cells (NFAT). Calcineurin is a serine/threoninespecific phosphatase that is uniquely activated by sustained elevations in intracellular calcium (12,16,26). Calcineurin is comprised of a 59-to 63-kDa catalytic A (CnA) subunit and a 19-kDa calcium binding B (CnB) subunit. Three mammalian CnA catalytic genes (␣, , ␥) and two CnB regulatory genes (B1, B2) have been identified in vertebrates. The CnA␣, A, and B1 gene products are ea...
To improve contractile function, the myocardium undergoes hypertrophic growth without myocyte proliferation in response to both pathologic and physiologic stimulation. Various membrane-bound receptors and intermediate signal transduction pathways regulate the induction of cardiac hypertrophy, but the cardioprotective regulatory pathways or effectors that antagonize cardiac hypertrophy remain poorly understood. Here we identify the small GTPase Cdc42 as a signaling intermediate that restrained the cardiac growth response to physiologic and pathologic stimuli. Cdc42 was specifically activated in the heart after pressure overload and in cultured cardiomyocytes by multiple agonists. Mice with a heart-specific deletion of Cdc42 developed greater cardiac hypertrophy at 2 and 8 weeks of stimulation and transitioned more quickly into heart failure than did wild-type controls. These mice also displayed greater cardiac hypertrophy in response to neuroendocrine agonist infusion for 2 weeks and, more remarkably, enhanced exercise-induced hypertrophy and sudden death. These pathologies were associated with an inability to activate JNK following stimulation through a MEKK1/ MKK4/MKK7 pathway, resulting in greater cardiac nuclear factor of activated T cells (NFAT) activity. Restoration of cardiac JNK signaling with an Mkk7 heart-specific transgene reversed the enhanced growth effect.These results identify what we believe to be a novel antihypertrophic and protective cardiac signaling pathway, whereby Cdc42-dependent JNK activation antagonizes calcineurin-NFAT activity to reduce hypertrophy and prevent transition to heart failure.
High intake of natural antioxidants (NA) from plant-derived foods and beverages is thought to provide cardiovascular benefits. The endothelium plays a pivotal role in cardiovascular homeostasis, and for this reason, the molecular events resulting from NA actions on endothelial cells (ECs) are actively investigated. Here, we show the direct impact of two NA, coumaric acid and resveratrol, on intracellular reactive oxygen species levels, protein carbonylation, and cell physiology in human ECs. While at lower doses, both NA promoted antioxidant effects, at moderately high doses, NA elicited a dose-dependent pro-oxidant effect, which was followed by apoptosis, cell damage, and phospho-Akt downregulation. NA-induced pro-oxidant effects were counteracted by N-acetyl cysteine and diphenyleneiodonium (DPI), suggesting a role for flavin oxidases in NA-induced toxicity. DPI also prevented NA-induced phospho-Akt downregulation indicating that Akt can work downstream of flavin oxidases in mediating cellular responses to NA. Stimulation of phospho-Akt by insulin dramatically counteracted NA-induced cell death, an effect abolished by Akt inhibition further suggesting that mechanistically Akt regulates cell survival in response to NA-induced stress. Although further studies are required to better characterize the molecular mechanism of NA-induced cell toxicity, our study is the first to show in a human vascular model that moderately high doses of NA can induce cell damage mediated by flavoproteins and the Akt pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.