A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising, and the bore front corresponds to the leading edge of the tidal wave in a funnel shaped estuarine zone with macro-tidal conditions. Some field observations were conducted in the tidal bore of the Garonne River on 7 June 2012 in the Arcins channel, a few weeks after a major flood. The tidal bore was a flat undular bore with a Froude number close to unity: Fr 1 = 1.02 and 1.19 (morning and afternoon respectively). A key feature of the study was the simultaneous recording of the water elevation, instantaneous velocity components and suspended sediment concentration (SSC) estimates, together with a detailed characterisation of the sediment bed materials. The sediment was some silty material (d 50 13 m) which exhibited some non-Newtonion thixotropic behaviour. The velocity and SSC estimate were recorded simultaneously at high frequency, enabling a quantitative estimate of the suspended sediment flux at the end of the ebb tide and during the early flood tide. The net sediment flux per unit area was directed upstream after the bore, and its magnitude was much larger than that at end of ebb tide. The field observations highlighted a number of unusual features on the morning of 7 June 2012. These included (a) a slight rise in water elevation starting about 70 s prior to the front, (b) a delayed flow reversal about 50 s after the bore front, (c) some large fluctuations in suspended sediment concentration (SSC) about 100 s after the bore front and (d) a transient water elevation lowering about 10 minutes after the bore front passage. The measurements of water temperature and salinity showed nearly identical results before and after the tidal bore, with no evidence of saline and thermal front during the study.
Laboratory experiments have been performed in a wave flume to investigate the coastal cliff recession under regular waves forcing. The different processes of the cliff erosion cycle are described and we focus on bottom evolution, which seem mostly depend on the surf similarity parameter ξ. We observed steep planar (ξ > 0.7), gentle planar (0.5 < ξ < 0.7) and bared (ξ < 0.5) profiles. We noticed different sandbar dynamics including either steady or unsteady self-sustained oscillating states. Then we estimate the role of the self-organized material on the cliff recession rate. We show that the cliff erosion increases with the wave energy flux and is stronger for a gentle planar profile than for a bared profile of bottom morphology. However, the cliff recession rate as a function of the cliff height is not monotonic due to a different dynamics of bottom morphologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.