Introduction Repeated use of functional electrical stimulation can promote functional recovery in individuals with neurological paralysis. We designed garments able to deliver functional electrical stimulation. Methods Shirts and pants containing electrodes knitted with a conductive yarn were produced. Electrodes were moistened with water before use. Stimulation intensity at four thresholds levels (sensory, movement, full range of motion, and maximal), stimulation comfort, and electrical properties of the interface were tested in one able-bodied subject with garment electrodes and size-matched conventional gel electrodes. The pants and shirt were then used to explore usability and design limitations. Results Compared to gel electrodes, fabric electrodes had a lower sensory threshold (on forearm muscles) but they had a higher maximal stimulation threshold (for all tested muscles). The stimulation delivery was comfortable when the garment electrodes were recently moistened; however, as the electrodes dried (within 9 to 18 min) stimulation became unpleasant. Inconsistent water content in the fabric electrodes caused inconsistent intensity thresholds and inconsistent voltage necessary to apply a desired stimulation current. Garments’ tightness and impracticality of electrode lead necessitate further design improvement. Conclusions Fabric electrodes offer a promising alternative to gel electrodes. Further work involving people with paralysis is required to overcome the identified challenges.
Neurological conditions like hemiplegia following stroke or tetraplegia following spinal cord injury, result in a massive compromise in motor function. Each of the two conditions can leave individuals dependent on caregivers for the rest of their lives. Once medically stable, rehabilitation is the main stay of treatment. This article will address rehabilitation of upper extremity function. It is long known that moving the affected limb is crucial to recovery following any kind of injury. Overtime, it has also been established that just moving the affected extremities does not suffice, and that the movements have to involve patient's participation, be as close to physiologic movements as possible, and should ideally stimulate the entire neuromuscular circuitry involved in producing the desired movement. For over four decades now, functional electrical stimulation (FES) is being used to either replace or retrain function. The FES therapy discussed in this article has been used to retrain upper extremity function for over 15 years. Published data of pilot studies and randomized control trials show that FES therapy produces significant changes in arm and hand function. There are specific principles of the FES therapy as applied in our studies: (i) stimulation is applied using surface stimulation electrodes, (ii) there is minimum to virtually no pain during application, (iii) each session lasts no more than 45-60 min, (iv) the technology is quite robust and can make up for specificity to a certain extent, and (v) fine motor function like two finger precision grip can be trained (i.e., thumb and index finger tip to tip pinch). The FES therapy protocols can be successfully applied to individuals with paralysis resulting from stroke or spinal cord injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.