Typical challenges of simulation-based design optimization include unavailable gradients and unreliable approximations thereof, expensive function evaluations, numerical noise, multiple local optima, and the failure of the analysis to return a value to the optimizer. One possible remedy to alleviate these issues is to use surrogate models in lieu of the computational models or simulations and derivative-free optimization algorithms. In this work, we use the R dynaTree package to build statistical surrogates of the blackboxes and the direct search method for derivative-free optimization. We present different formulations for the surrogate problem (SP) considered at each search step of the mesh adaptive direct search (MADS) algorithm using a surrogate management framework. The proposed formulations are tested on 20 analytical benchmark problems and two simulation-based multidisciplinary design optimization (MDO) problems. Numerical results confirm that the use of statistical surrogates in MADS improves the efficiency of the optimization algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.