As of June 2021, the World Health Organization (WHO) has reported 171.7 million confirmed cases including 3,698,621 deaths from COVID-19. Detecting COVID-19 and other lung diseases from Chest X-Ray (CXR) images can be very effective for emergency diagnosis and treatment as CXR is fast and cheap. The objective of this study is to develop a system capable of detecting COVID-19 along with 14 other lung diseases from CXRs in a fair and unbiased manner. The proposed system consists of a CXR image selection technique and a deep learning based model to classify 15 diseases including COVID-19. The proposed CXR selection technique aims to retain the maximum variation uniformly and eliminate poor quality CXRs with the goal of reducing the training dataset size without compromising classifier accuracy. More importantly, it reduces the often hidden bias and unfairness in decision making. The proposed solution exhibits a promising COVID-19 detection scheme in a more realistic situation than most existing studies as it deals with 15 lung diseases together. We hope the proposed method will have wider adoption in medical image classification and other related fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.