Bottom-up nanofabrication is increasingly making use of self-assembled DNA to fabricate nanowires and potential integrated circuits, although yields of such electronic nanostructures are inadequate, as is the ability to reliably make electrical measurements on them. In this paper, we report improved yields and unprecedented conductivity measurements for Au nanowires created on DNA origami tile substrates. We created several different self-assembled Au nanowire arrangements on DNA origami tiles that are approximately 70 nm × 90 nm, through anisotropic growth of Au nanorods attached to specific sites. Modifications to the tile design increased yields of the final desired nanostructures as much as 6-fold. In addition, we measured the conductivity of Au nanowires created on these DNA tiles (∼130 nm long, 10 nm diameter, and 40 nm spacing between measurement points) with a four-point measurement technique that utilized electron beam induced metal deposition to form probe electrodes. These nanowires formed on single DNA origami tiles were electrically conductive, having resistivities as low as 4.24 × 10 Ω m. This work demonstrates the creation and measurement of inorganic nanowires on single DNA origami tiles as a promising path toward future bottom-up fabrication of nanoelectronics.
This work examines the anisotropic electroless plating of DNA-functionalized gold nanorods attached to a DNA origami template to fabricate continuous metal structures of rectanglar, square, and T shapes. DNA origami, a versatile method for assembling a variety of 2- and 3-D nanostructures, is utilized to construct the DNA breadboard template used for this study. Staple strands on selective sites of the breadboard template are extended with an additional nucleotide sequence for the attachment of DNA-functionalized gold nanorods to the template via base pairing. The nanorod-seeded DNA templates are then introduced into an electroless gold plating solution to determine the extent to which the anisotropic growth of the nanorods is able to fill the gaps between seeds to create continuous structures. Our results show that the DNA-functionalized nanorods grow anisotropically during plating at a rate that is approximately 4 times faster in the length direction than in the width direction to effectively fill gaps of up to 11-13 nm in length. The feasibility of using this directional growth at specific sites to enable the fabrication of continuous metal nanostructures with diameters as thin as 10 nm is demonstrated and represents important progress toward the creation of devices and systems based on self-assembled biological templates.
DNA
origami-templated fabrication enables bottom-up fabrication
of nanoscale structures from a variety of functional materials, including
metal nanowires. We studied the impact of low-temperature annealing
on the morphology and conductance of DNA-templated nanowires. Nanowires
were formed by selective seeding of gold nanorods on DNA origami and
gold electroless plating of the seeded structures. At low annealing
temperatures (160 °C for seeded-only and 180 °C for plated),
the wires broke up and separated into multiple, isolated islands.
Through the use of polymer-constrained annealing, the island formation
in plated wires was suppressed up to annealing temperatures of 210
°C. Four-point electrical measurements showed that the wires
remained conductive after a polymer-constrained annealing at 200 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.