Articles you may be interested inDual mode operation of bistable chiral splay nematic liquid crystal cell using horizontal switching for dynamic operation J. Appl. Phys. 105, 074508 (2009); 10.1063/1.3103769 Dynamic switching behavior of bistable chiral-tilted homeotropic nematic liquid crystal displays Crucial influence on d ∕ p range in bistable chiral tilted-homeotropic nematic liquid crystal cells Reflective mode of a nematic liquid crystal with chirality in a hybrid aligned configuration
Unusual residual time of image sticking under high-voltage electrostatic discharge (ESD) stress on liquid crystal (LC) cells has been observed. It was found that nanoscaled conductive particles doped in LC cells can significantly reduce the residual time of image sticking and the breakdown voltage of the LC cells. This finding can help to protect the doped cells from the attacks of ESD and thus to improve their displaying performance and reliability. In this study, nanoscaled tin-doped indium oxide (ITO) powders were uniformly mixed with high-resistance LC to form a suspension solution. In order to investigate other effects of ITO particles on the LC at high and low voltages, optical and electrical characteristics were compared for the doped cells and those samples without intentional doping. According to the measurement results, it is interesting to find that, except the breakdown characteristic, no other properties in the doped samples were changed with respect to the displaying functions under normal operational voltage.
The switching behaviors of dual frequency liquid crystals (DFLC) in a bistable chiral tilted-homeotropic nematic (BHN) LC cell are simulated and compared with the observed results. This cell can be switched between tilted-homeotropic state and twisted state under the applied voltage as low as 5V. The reason for the low switching voltage is attributed to the dielectric anisotropy character of DFLC. The analysis also shows that the switching wave form accelerates the switching behaviors of the directors which results in faster response in BHN LC cell.
Abstract— In order to reduce panel cost, reduce power consumption, and minimize thickness, a single panel with dual functions for high‐transmissive main displays and high reflective sub‐displays is becoming the trend. Two novel RGB‐W transflective 1.9‐in. a‐Si TFT LCDs have been developed to meet the requirements. By using the traditional seven‐mask dual‐cell‐gap structure, novel transflective tRGB‐t/rW TFT LCD and tRGB‐rW TFT‐LCD panels were fabricated with high transmittance and high reflectance, respectively. The optical clarity is excellent in both dark and bright conditions. Their superior optical performance is attributed to the high‐efficiency “transflective white” subpixel or “reflective white” subpixel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.