For patients with proliferative lupus nephritis, short-term therapy with intravenous cyclophosphamide followed by maintenance therapy with mycophenolate mofetil or azathioprine appears to be more efficacious and safer than long-term therapy with intravenous cyclophosphamide.
The frequency and outcome of recurrent lupus nephritis (RLN) among recipients of a kidney allograft vary among single-center reports. From the United Network for Organ Sharing files, we estimated the period prevalence and predictors of RLN in recipients who received a transplant between 1987 and 2006 and assessed the effects of RLN on allograft failure and recipients' survival. Among 6850 recipients of a kidney allograft with systemic lupus erythematosus, 167 recipients had RLN, 1770 experienced rejection, and 4913 control subjects did not experience rejection. The period prevalence of RLN was 2.44%. Non-Hispanic black race, female gender, and age Ͻ33 years each independently increased the odds of RLN. Graft failure occurred in 156 (93%) of those with RLN, 1517 (86%) of those with rejection, and 923 (19%) of control subjects without rejection. Although recipients with RLN had a fourfold greater risk for graft failure compared with control subjects without rejection, only 7% of graft failure episodes were attributable to RLN compared and 43% to rejection. During follow-up, 867 (13%) recipients died: 27 (16%) in the RLN group, 313 (18%) in the rejection group, and 527 (11%) in the control group. In summary, severe RLN is uncommon in recipients of a kidney allograft, but black recipients, female recipient, and younger recipients are at increased risk. Although RLN significantly increases the risk for graft failure, it contributes far less than rejection to its overall incidence; therefore, these findings should not keep patients with lupus from seeking a kidney transplant.
Several xenobiotic (organic cation and anion) transporters have recently been identified, although their endogenous substrates, if such exist, remain unknown. When we initially identified NKT, also known as OAT1, the first member of the organic anion transporter (OAT) family (Lopez-Nieto CE, You G, Bush KT, Barros EJ, Beier DR, and Nigam SK. J Biol Chem 272: 6471-6478, 1997), we noted its expression in the embryonic kidney. We have now demonstrated its transporter function and more fully examined the spatiotemporal expression patterns of representative organic ion transporters, [NKT (OAT1), Roct, OCT1, and NLT, also known as OAT2] during murine development. In the kidney, NKT (OAT1), OCT1, and Roct transcripts appeared at midgestation, coinciding with proximal tubule differentiation, and gradually increased during nephron maturation. A similar pattern was observed for NLT (OAT2) in the liver and kidney, although, in the kidney, NLT (OAT2) transcription did not increase as dramatically. The roughly cotemporal expression of these related transporters in the developing proximal tubule may indicate common transcriptional regulation. Expression during embryogenesis in extrarenal sites could suggest a role in the formation and maintenance of nonrenal tissues. Importantly, all four genes were expressed in unexpected places during nonrenal organogenesis: Roct in the fetal liver (temporally coinciding with the onset of hematopoiesis) and neural tissue; NKT (OAT1) in the fetal brain; OCT1 in the ascending aorta and atrium; and NLT (OAT2) in the fetal lung, intestine, skin, and developing bone. Because these gene products mediate the transport of a broad range of metabolites and toxins, it seems likely that, apart from their known functions, these transporters play a role in transport of organic molecules, perhaps including those with morphogenetic activity. These genes could also play important developmental roles independent of transport function.
The frequency of chronic renal failure increases with age, especially in women after menopause. Glomerulosclerosis is a common cause of chronic renal failure in aging. We reported that pre-menopausal female C57BL6 (B6) mice are resistant to glomerulosclerosis, irrespective of the type of injury. However, we now show that B6 mice develop progressive glomerulosclerosis after menopause. Glomerular lesions, first recognized in 18-month-old mice, consisted of hypertrophy, vascular pole sclerosis, and mesangial cell proliferation. Diffuse but moderate mesangial sclerosis and more marked hypertrophy were present at 22 months. At 28 to 30 months the glomerulosclerosis was diffuse and increased levels of type I and type IV collagen and transforming growth factor-1 mRNA were present. Urine albumin excretion was significantly increased in 30-month-old mice. Chronic renal failure is a major health problem world-wide and its prevalence has been rising.
Estrogen deficiency may contribute to the development and progression of glomerulosclerosis in postmenopausal women. The responsiveness to estrogens could be controlled by genetic traits related to those that determine the susceptibility to glomerular scarring. This study was undertaken to determine whether the intensity of the sclerotic response was modified by the estrogen status in sclerosis-prone ROP Os/؉ mice. Ovariectomized ROP Os/؉ mice developed more severe renal dysfunction and glomerulosclerosis than intact, ie, estrogen sufficient agematched female mice. Ovariectomized ROP Os/؉ exhibited increased accumulation of extracellular matrix, predominantly of laminin, and a marked distortion of the glomerular architecture. We found an increase in macrophage infiltration in the mesangium of ovariectomized ROP Os/؉. Estrogen deficiency decreased glomerular estrogen receptor expression in ROP Os/؉ mice, which we had previously found to be low in the parental ROP strain. Thus, although physiological estrogen levels in young ROP Os/؉ mice could not prevent the development of glomerulosclerosis, estrogen deficiency accelerated the progression of glomerular scarring in this mouse strain. This suggests that estrogen replacement will slow but not prevent the progression of glomerulosclerosis. It underscores the importance of the genetic composition of individuals that determines the susceptibility to diseases as well as the response to treatment. Estrogen deficiency may contribute to the development and progression of glomerulosclerosis in postmenopausal women. This is suggested by data from the United States Renal Data System, which show that the female to male ratio of patients with end-stage renal disease because of diabetes increases sharply in the postmenopausal age groups, especially of those from ethnic minorities. 1 The United States Renal Data System data as well as additional genetic and epidemiological studies also suggest that genetic factors play an important role in the susceptibility to develop glomerulosclerosis and the progression to end-stage renal disease. 2,3 The responsiveness to estrogens, which is primarily determined by the level of estrogen receptor (ER) expression, 4 could be controlled by genetic traits related to those that determine the susceptibility to glomerular scarring. We have previously shown that the renal glomerulus is a direct target tissue for estrogens. 5,6 Human and mouse mesangial cells, which play a central role in the pathogenesis of glomerulosclerosis, express both ER subtypes ␣ and . 5 We reported that these ERs were transcriptionally active and that estrogens positively regulated ER expression in mesangial cells. 5 We also found that estrogens provided protection from glomerulosclerosis by regulating genes involved in extracellular matrix (ECM) turnover in a manner leading to the prevention of ECM accumulation in the mesangium. 5,6 Estrogen treatment increased the expression and activity of matrix metalloproteinase (MMP)-9 in mesangial cells isolated from glomeruloscler...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.