[1] Subsurface ice accumulations in temperate karst environments are assumed to be highly sensitive to external climate forcing and therefore represent a favorable setting for studying processes controlling heat exchanges in the heterothermic zone of a karst system. Air, rock, water, and ice temperatures were measured and complemented by airflow, water discharge, and cave air humidity data during a case study carried out between 2001 and 2006 at Monlesi ice cave in the Swiss Jura Mountains. The energy balance of the system could be quantified for an annual cycle, and results demonstrate that forced convection, which is controlled by the temperature difference between the cave air and the external atmosphere, is a driving force for the heat exchange between the cave and the surrounding environment. Therefore compared to the external mean annual conditions, major thermal anomalies are to be expected in the entrance zone of a cave system. Since this heterothermic zone may extend over several hundreds of meters, a better understanding of the mechanisms controlling the subsurface deposition environment represents a major prerequisite for high-resolution paleoenvironmental reconstructions from cave deposits.
Le trou Qui Souffle présente trois entrées dont deux sont connues et distantes de 2 km. Une entrée ayant été rapidement fermée, on a mesuré l'influence sur la vitesse de l'air à l'autre entrée. On trouve une vitesse de propagation, de l'ordre de 100 m/s, qui dépend des caractéristiques de la cavité (débit d'air, volume et morphologie des vides souterrains).
In the past, it was crucial to ventilate the old mines, in order to make the miners' work possible. In most mountainous areas, the galleries where equipped with ventilation shafts. However, in many short galleries, such shafts were not bored and air removal was achieved thanks to natural ventilation. It seems that beyond a critical distance, natural ventilation is no longer efficient and the turnover of breathable air is not achieved. The work presented here deals with the physical analysis of air removal in a horizontal mine gallery, using three quantitative approaches. In the first approach, air velocity and temperature measurements were used to establish an empirical expression of the air velocity within the gallery with respect to the temperature difference between the inner and the outer air. This law quantifies the breathable air change rate and gives the distance (of about 50 meters) above which ventilation does not work anymore. The second approach is based on a theoretical analysis which yields the following expression of the air velocity, where T(out) and T(end) . are respectively the temperatures outside and at the end of the gallery, g is the gravitational acceleration, H is the gallery neight and x is the distance from the gallery entry. In the last approach, the flow field is solved with a commercial CFD (Computational Fluid Dynamics) code based on the finite volume method. Although convergence was not actually reached due to the strong dynamic uncoupling effect between the inner and the outer parts of the gallery, the qualitative results computed with this code are in agreement with the previous ones.
The Buridan's donkey ; the principle of curie and the chimney effect (air flow in u-shaped cavity). In a U shaped cave there is an air flow in winter. This phenomenon is a beautiful exemple of physical broken symmetry. In summer, it is possible to observe a pendulum oscillation of cold air in a U-shaped cavity.
Un enregistrement suivi des débits et des températures d'une source permet de remonter aux puissances thermiques reçues par l'eau. On s'intéresse à des karsts profonds qui permettent une assez bonne uniformisation des températures et on analyse plus particulièrement les fluctuations de la température en fonction du débit et le rôle du flux géothermique. Dans le bilan thermique d'une source, les réactions chimiques exothermiques n'ont qu'une action négligeable. Le travail des forces de pesanteur conduit à une augmentation constante de température quel que soit le débit. Le flux géothermique a une action sur la température d'étiage, comparable à celle de la pesanteur. Pendant les crues, l'influence du flux géothermique est apparemment bien plus réduite. Mais analysant les échanges thermiques pendant les transitoires de crue, on constate le rôle considérable de l'inertie thermique du calcaire profond, apport moins important certes que celui du calcaire superficiel. La matrice calcaire profonde de la zone noyée fournit de la chaleur à l'eau au moment de la crue et en récupère au moment de la décrue et du tarissement [ce point a déjà été étudié par Renner, 1996, Badino, 2005]. On examine différents processus qui expliquent ce transfert en régime transitoire, en particulier des processus non symétriques dans le temps. On développe ensuite une méthode nouvelle pour séparer le flux géothermique des autres contributions. Cette méthode est exacte dans le cas de pluies isothermes, et approchée dans les autres cas. L'étude conduit à l'obtention de la surface de collection du flux géothermique, voisine de celle du bassin versant de la résurgence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.