Street trees play a crucial role in improving urban environments, and their management depends on the perceptions and preferences of urban residents. This study surveyed 884 urban residents’ preferences and perceptions towards street trees in a metropolitan area in Korea and proposed guidelines for their sustainable management. Urban residents were aware of the presence of street trees based on visual changes and were generally satisfied with their shape, size, and growth. They preferred trees that provide environmental and ecological services, such as offering shade, purifying the air, and preserving the ecosystem, while viewing the generation of debris from street trees as the most significant problem. Urban residents’ perspectives on street tree preference and issues varied based on age, income, and housing type. Although urban residents acknowledged the need for the maintenance and management of street trees, they believed that this was the responsibility of central and local governments, not local residents. Collectively, the residents had a positive view of urban street trees and believed that maintenance and management are necessary to address problems caused by their presence. Our research findings provide valuable information to help city and landscaping experts select street tree species and establish maintenance and management strategies.
Street trees are crucial for air pollutant reduction in urban areas. Herein, we used computational fluid dynamics (CFD) simulation to identify changes in airborne particulate matter (PM2.5) concentration based on wind characteristics (direction and velocity) and the green network of street trees. The green network was assessed based on composition of the green area of street trees in the central reserve area and between the motor and pedestrian roads. The PM2.5 concentration varied according to the presence or absence of major reserve planting and the planting structure of the street trees, but not according to the wind direction or velocity. The concentration was lower when the wind direction was 45° (than when the wind direction was 0°), whereas it showed a more significant decrease as the wind velocity increased. Despite variation at each measurement site, the PM2.5 reduction was generally higher when the central reserve and street trees had a multi-planting structure. Hence, to ensure an effective reduction in the PM2.5 concentration on motor roads and reduce its negative impact on pedestrians, both arbors and shrubs should be planted in the central reserve area. The study results will serve as reference for managing the green area network and linear green infrastructure in terms of improving the atmospheric environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.