Transmembrane signaling between intracellular compartments is often controlled by regulated proteolysis. Escherichia coli respond to misfolded or unfolded outer-membrane porins (OMPs) in the periplasm by inducing sigma(E)-dependent transcription of stress genes in the cytoplasm. This process requires a proteolytic cascade initiated by the DegS protease, which destroys a transmembrane protein (RseA) that normally binds to and inhibits sigma(E). Here, we show that peptides ending with OMP-like C-terminal sequences bind the DegS PDZ domain, activate DegS cleavage of RseA, and induce sigma(E)-dependent transcription. These results suggest that DegS acts as a sensor of envelope stress by binding unassembled OMPs. DegS activation involves relief of inhibitory interactions between its PDZ and protease domains. Peptide binding to inhibitory PDZ domains in proteases related to DegS, including DegP/HtrA, may also regulate the degradation of specific substrates by these enzymes.
The SsrA or tmRNA quality control system relieves ribosome stalling and directs the addition of a degradation tag to the C terminus of the nascent chain. In some instances, SsrA tagging of otherwise full-length proteins occurs when the ribosome pauses at stop codons during normal translation termination. Here, the identities of the C-terminal residues of the nascent chain are shown to play an important role in full-length protein tagging. Specifically, a subset of C-terminal Xaa-Pro sequences caused SsrA tagging of the full-length YbeL protein from Escherichia coli. This tagging increased when a less efficient stop codon was used, increased in cells lacking protein release factor-3, and decreased when protein release factor-1 was overexpressed. Incorporation of the analog azetidine-2-carboxylic acid in place of proline suppressed tagging, whereas incorporation of 3,4-dehydroproline increased SsrA tagging of full-length YbeL. These results suggest that the detailed chemical or conformational properties of the C-terminal residues of the nascent polypeptide can affect the rate of translation termination, thereby influencing ribosome pausing and SsrA tagging at stop codons.
The SsrA or tmRNA quality control system intervenes when ribosomes stall on mRNAs and directs the addition of a Cterminal peptide tag that targets the modified polypeptide for degradation. Although hundreds of SsrA-tagged proteins can be detected in cells when degradation is prevented, most of these species have not been identified. Consequently, the mRNA sequence determinants that cause ribosome stalling and SsrA tagging are poorly understood. SsrA tagging of Escherichia coli ribokinase occurs at three specific sites at or near the C terminus of this protein. The sites of tagging correspond to ribosome stalling at the termination codon and at rare AGG codons encoding Arg-307 and Arg-309, the antepenultimate and Cterminal residues of E. coli ribokinase. Mutational analyses and studies of the effects of overexpressing the tRNA that decodes AGG reveal that the combination of a rare arginine codon at the C terminus and the adjacent inefficient UGA termination codon act to recruit the SsrA-tagging system, presumably by slowing the rate of translation elongation and termination.
The mobile genetic element ICEBs1 is an integrative and conjugative element (a conjugative transposon) found in Bacillus subtilis. The RecA-dependent SOS response and the RapI-PhrI cell sensory system activate ICEBs1 gene expression by stimulating cleavage of ImmR, the ICEBs1 immunity repressor, by the protease ImmA. We found that increasing the amount of wild-type ImmA in vivo caused partial derepression of ICEBs1 gene expression. However, during RapI-mediated derepression of ICEBs1 gene expression, ImmA levels did not detectably increase, indicating that RapI likely activates the protease ImmA by increasing its specific activity. We also isolated and characterized mutations in immA (immA h ) that cause partial derepression of ICEBs1 gene expression in the absence of inducing signals. We obtained two types of immA h mutations: one type caused increased amounts of the mutant proteins in vivo but no detectable effect on specific activity in vitro; the other type had no detectable effect on the amount of the mutant protein in vivo but caused increased specific activity of the protein (as measured in vitro). Together, these findings indicate that derepression of ICEBs1 gene expression is likely caused by an increase in the specific activity of ImmA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.