Despite the abundance of localization applications, the tracking devices have never been truly realized in E-textiles. Standard printed circuit board (PCB)-based devices are obtrusive and rigid and hence not suitable for textile based implementations. An attractive option would be direct printing of circuit layout on the textile itself, negating the use of rigid PCB materials. However, high surface roughness and porosity of textiles prevents efficient and reliable printing of electronics on textile. In this work, by printing an interface layer on the textile first, a complete localization circuit integrated with an antenna has been inkjet-printed on the textile for the first
A WiFi Tracking Device Printed Directly on Textile for Wearable Electronics Applications Bauyrzhan KrykpayevWearable technology is quickly becoming commonplace in our everyday life -fitness and health monitors, smart watches, and Google Glass, just to name a few. It is very clear that in near future the wearable technology will only grow. One of the biggest wearable fields is the E-textiles. E-textiles empower clothes with new functionality by enhancing fabrics with electronics and interconnects. The main obstacle to the development of E-textile field is the relative difficulty and large tolerance in its manufacturing as compared to the standard circuit production. Current methods such as the application of conductive foils, embroidering of conductive wires and treatment with conductive coatings do not possess efficient, fast and reliable mass production traits inherent to the electronic industry. On the other hand, the method of conductive printing on textile has the potential to unlock the efficiency similar to PCB production, due to its roll-to-roll and reel-to-reel printing capabilities. Furthermore, printing on textiles is a common practice to realize graphics, artwork, etc. and thus adaptability to conductive ink printing will be relatively easier. Even though conductive printing is a fully additive process, the end circuit layout is very similar to the one produced via PCB manufacture. However, due to high surface roughness and porosity of textiles, efficient and reliable printing on textile has remained elu-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.