The ability to regulate intracellular gene expression with exogenous nucleic acids such as small interfering RNAs (siRNAs) has substantial potential to improve the study and treatment of disease. However, most transfection agents and nanoparticle-based carriers that are used for the intracellular delivery of nucleic acids cannot distinguish between diseased and healthy cells, which may cause them to yield unintended widespread gene regulation. An ideal delivery system would only silence targeted proteins in diseased tissue in response to an external stimulus. To enable spatiotemporal control over gene silencing, researchers have begun to develop nucleic acid-nanoparticle conjugates that keep their nucleic acid cargo inactive until it is released from the nanoparticle on-demand by externally applied near-infrared laser light. This strategy can overcome several limitations of other nucleic acid delivery systems, but the mechanisms by which these platforms operate remain ill understood. Here, we perform a detailed investigation of the mechanisms by which silica core/gold shell nanoshells (NSs) release conjugated siRNA upon excitation with either pulsed or continuous wave (CW) near-infrared (NIR) light, with the goal of providing insight into how these nanoconjugates can enable on-demand gene regulation. We demonstrate that siRNA release from NSs upon pulsed laser irradiation is a temperature-independent process that is substantially more efficient than siRNA release triggered by CW irradiation. Contrary to literature, which suggests that only pulsed irradiation releases siRNA duplexes, we found that both modes of irradiation release a mixture of siRNA duplexes and single-stranded oligonucleotides, but that pulsed irradiation results in a higher percentage of released duplexes. To demonstrate that the siRNA released from NSs upon pulsed irradiation remains functional, we evaluated the use of NSs coated with green fluorescent protein (GFP)-targeted siRNA (siGFP-NS) for on-demand knockdown of GFP in cells. We found that GFP-expressing cells treated with siGFP-NS and irradiated with a pulsed laser experienced a 33% decrease in GFP expression compared to cells treated with no laser. Further, we observed that light-triggered gene silencing mediated by siGFP-NS is more potent than using commercial transfection agents to deliver siRNA into cells. This work provides unprecedented insight into the mechanisms by which plasmonic NSs release siRNA upon light irradiation and demonstrates the importance of thoroughly characterizing photoresponsive nanosystems for applications in triggered gene regulation.
Monolayer MoS2 is a promising semiconductor to overcome the physical dimension limits of microelectronic devices. Understanding the thermochemical stability of MoS2 is essential since these devices generate heat and are susceptible to oxidative environments. Herein, the promoting effect of molybdenum oxides (MoOx) particles on the thermal oxidation of MoS2 monolayers is shown by employing operando X‐ray absorption spectroscopy, ex situ scanning electron microscopy and X‐ray photoelectron spectroscopy. The study demonstrates that chemical vapor deposition‐grown MoS2 monolayers contain intrinsic MoOx and are quickly oxidized at 100 °C (3 vol% O2/He), in contrast to previously reported oxidation thresholds (e.g., 250 °C, t ≤ 1 h in the air). Otherwise, removing MoOx increases the thermal oxidation onset temperature of monolayer MoS2 to 300 °C. These results indicate that MoOx promote oxidation. An oxide‐free lattice is critical to the long‐term stability of monolayer MoS2 in state‐of‐the‐art 2D electronic, optical, and catalytic applications.
Films of ZnO nanorods grown by chemical vapor deposition were functionalized with a chromophore in a stepwise process that preserves the surface morphology. In the first step, the ZnO nanorods were functionalized by exposure to prop-2-ynoic acid (propiolic acid) in vacuum, which did bind through the COOH group leading to a ZnO surface functionalized with ethyne moieties (ethyne/ZnO). In the second step, 9-(4-azidophenyl)-2,5-di-tert-butylperylene (DTBPe-Ph-N) was reacted with the ethyne/ZnO surface via copper-catalyzed azide-alkyne click reaction (CuAAC) in solution to form the DTBPe-functionalized surface (DTBPe/ZnO). The ZnO morphology was preserved after each step, as demonstrated by scanning electron microscopy (SEM). Each step was probed by X-ray photoelectron spectroscopy (XPS), and transient absorption spectroscopy (TA) of the resulting DTBPe/ZnO surface shows interfacial electron transfer following visible light excitation. As expected, attempts to bind the reference compound 1-(4-(8,11-ditert-butylperylen-3-yl)-phenyl)-1H-1,2,3-triazole-4-carboxylic acid (DTBPe-Ph-Tz-COOH) directly from solution lead to etched surfaces (confirmed by SEM) and undefined binding modes (confirmed by TA).
Cyclic tetrapyrroles are the active core of compounds with crucial roles in living systems, such as hemoglobin and chlorophyll, and in technology as photocatalysts and light absorbers for solar energy conversion. Zinc tetraphenylporphyrin (Zn-TPP) is a prototypical cyclic tetrapyrrole that has been intensely studied in past decades. Due to its importance for photo-chemical processes the optical properties are of particular interest and, accordingly, numerous studies have focused on light absorption and excited-state dynamics of Zn-TPP. Relaxation after photoexcitation in the Soret band involves internal conversion that is preceded by an ultrafast process. This relaxation process has been observed by several groups. Hitherto, it has not been established if it involves a higher lying “dark” state or vibrational relaxation in the excited S2 state. Here we combine high time resolution electronic and vibrational spectroscopy to show that this process constitutes vibrational relaxation in the anharmonic S2 potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.