BACKGROUND To assess the impact of ovarian cystectomy for endometriomas on the ovarian reserve, we evaluated the pre- and post-operative levels of serum anti-Müllerian hormone (AMH). We also analyzed the correlations between factors related to endometriosis and surgery for endometriomas and the serum AMH levels to investigate which factors affect ovarian reserve. METHODS Thirty-eight patients who were undergoing ovarian cystectomy for unilateral endometrioma (n = 20) and bilateral endometriomas (n = 18) participated. Preoperative and post-operative serum samples were collected and assayed for AMH levels, and changes between the two samples were analyzed in association with parameters of endometriosis and surgery for endometriomas. RESULTS The mean AMH level was 3.9 ng/ml prior to surgery, and was reduced to 2.1 ng/ml at 1 month post-surgery. The rate of decline of the serum AMH level was significantly higher in the bilateral group than the unilateral group (62.8 ± 29.6 versus 24.7 ± 32.5%, P < 0.001). The rate of decline in the serum AMH levels showed a significant correlation to the revised American Society for Reproductive Medicine (rASRM) score (P = 0.003), but not age, cyst diameter, blood loss during the operation or the number of follicles removed in the specimens. CONCLUSIONS Our results suggest that the decrease in ovarian reserve should be taken into account in patients indicated for cystectomy for bilateral endometriomas or unilateral endometrioma with high rASRM scores.
Folliculogenesis is a complex process, defined by the growth and development of follicles from the primordial population. Granulosa cells (GCs) play a vital role in every stage of follicular growth through proliferation, acquisition of gonadotropic responsiveness, steroidogenesis and production of autocrine/paracrine factors. A recently discovered hypothalamic neuropeptide phoenixin is involved in the regulation of the reproductive system. Phoenixin acts through its receptor, G protein-coupled receptor 173 (GPR173), to activate the cAMP/PKA pathway leading to the phosphorylation of CREB (pCREB). Here, we demonstrated the expression patterns of phoenixin and GPR173 in human ovary and explored its role in folliculogenesis. Phoenixin and GPR173 were both expressed in the human ovarian follicle, with increased expression in GCs as the follicle grows. Phoenixin treatment at 100 nM for 24 h induced the proliferation of human non-luteinized granulosa cell line, HGrC1 and significantly increased the expression levels of CYP19A1, FSHR, LHR and KITL, but decreased NPPC expression levels. These effects were suppressed by GPR173 siRNA. The expression level of CREB1, pCREB and estradiol (E2) production in the culture medium was significantly enhanced by phoenixin treatment in a concentration-dependent manner. Phoenixin also significantly increased the follicular area in a murine ovarian tissue culture model, leading to an increased number of ovulated oocytes with a higher level of maturation. Taken together, our data demonstrate that phoenixin is an intraovarian factor that promotes follicular growth through its receptor GPR173 by accelerating proliferation of GCs, inducing E2 production and increasing the expression of genes related to follicle development.
Our previous study found that 17β-estradiol (E2) suppresses primordial follicle activation and growth in cultured mouse ovaries. In this study, we administered tamoxifen, an estrogen receptor antagonist, into the abdominal cavity of mice to clarify the relationship between primordial follicle activation and the physiological concentration of E2 in mouse ovaries. The results showed that tamoxifen promoted primordial follicle activation. Administration of tamoxifen promoted degradation of the extracellular matrix surrounding primordial follicles in the ovaries. Furthermore, tamoxifen decreased the expression of stefin A, an inhibitor of cathepsins that digest some proteins and extracellular matrix, in the ovaries. Mechanical stress produced by the extracellular matrix reportedly suppresses the activation of primordial follicles. The collective results show that tamoxifen can promote primordial follicle activation through the degradation of the extracellular matrix surrounding primordial follicles. Our results indicate that E2 suppresses primordial follicle activation in vivo and that tamoxifen may be useful as a therapeutic agent against infertility. Graphical abstract
Background: Polycystic ovary syndrome (PCOS), a common endocrinal disorder, is associated with impaired oocyte development, which leads to infertility. However, the pathogenesis of PCOS has not been completely elucidated. Limited studies have analyzed the pathological characteristics of oocytes in PCOS. This study aimed to analyze the differentially expressed genes (DEGs) and epigenetic changes in the oocytes of the PCOS mouse model to identify the etiological factors.Methods: C57BL/6J female mice were subcutaneously injected with vehicle or 5α-dihydrotestosterone (250 µg/day) on days 16–18 of pregnancy. Female offspring were used as the control or PCOS group. The oocytes were collected from mice aged 7–9 weeks. The DEGs between the control and PCOS groups were analyzed using RNA sequencing (RNA-Seq). Additionally, the DNA methylation status was analyzed using the post-bisulfite adaptor tagging method. The ovarian tissue sections were stained with hematoxylin and eosin to examine the morphological changes. The proteins, Rps21 and Rpl36, were measured using immunostaining.Results: Compared with the control group, the PCOS group exhibited impaired estrous cycle and polycystic ovary-like morphology. RNA-Seq analysis revealed that 90 DEGs were upregulated and 27 DEGs were downregulated in the PCOS mouse model. DNA methylation analysis revealed 30 hypomethylated and 10 hypermethylated regions in the PCOS group. However, the DNA methylation status was not correlated with differential gene expression. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that five DEGs (Rps21, Rpl36, Rpl36a, Rpl37a, and Rpl22l1) were enriched in ribosome-related pathways. The immunohistochemical analysis revealed that the expression levels of Rps21 and Rpl36 were significantly upregulated in the PCOS mouse model.Conclusions: These results suggest that differential gene expression in the oocytes of the PCOS mouse model is related to impaired folliculogenesis. These findings improved our understanding of the pathogenesis of PCOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.