Cilia are organelles that protrude from the apical surface of most eukaryotic cells. According to their structure and motility, they are classified into three groups 1 . Primary monocilia, present in most cells, lack a central pair of microtubules (9+0 structure), and play several roles in mechanosensation and cell signaling. Nodal cilia have a 9+0 structure but, unlike primary cilia, they move and generate an asymmetric distribution of morphogenetic cues in the node, thereby contributing to laterality 2 . The third group is composed of motile 9+2 cilia that cover epithelial cells lining airways, reproductive tracts, and cerebral ventricles. Motile cilia play crucial functions in clearing mucus and debris in the airways and may assist the transit of sperm and eggs in genital tracts [3][4] . In the early postnatal mammalian brain, neuroepithelial cells that line the cerebral ventricles leave the cell cycle and differentiate into a monolayer of ependymal cells. At the end of maturation, the apical surface of ependymal cells bears dozens of cilia that beat in coordinate manner to facilitate the circulation of the cerebrospinal fluid (CSF), from sites of production in choroid plexuses to sites of absorption in subarachnoid spaces. In mice, mutations in genes involved in the assembly or structure of ependymal cilia, such as Mdnah5 5 , Ift88 (also known as Tg737 or Polaris) 6 , and Hy3 7-8 affect cilia genesis, CSF dynamics, and result in hydrocephalus. Thus far, however, little is known about the genetic factors that govern ependymal cilia polarization and the relationship between the polarity and the development and function of these organelles.Planar cell polarity (PCP), also known as tissue polarity, controls the polarization of epithelial cells in a plane perpendicular to their apicobasal axis. It was initially described in Drosophila, where it affects the stereotypic arrangement of cuticular hairs, sensory bristles, and Supplementary Fig. 1a, b). RT-PCR and (Supplementary Fig. 1c).Using the knocked-in beta-galactosidase reporter, we monitored the expression of Celsr2 in heterozygous mice. Consistent with published data [24][25][26] , Celsr2 expression was detected in all brain areas, from E11.5 to P5 (Fig. 1a-h). Celsr2 mutant mice develop progressive hydrocephalusCelsr2 mutant mice were viable and fertile, except for some females that had vaginal atresia. At birth, their brain did not display any flagrant morphological abnormality, suggesting that Celsr2 is not critical for cerebral embryonic development. However, a progressive ventricular dilation appeared between P5 and P10 with variable severity between animals, and became evident at P21 (Fig. 2a,b).The lateral ventricles were enlarged, and the septum had an abnormal triangular shape, due to 6 6 reduction of the dorsal part of the lateral septum. We did not observe any stenosis or constriction at the level of the foramen of Monro or of the aqueduct. The subcommissural organ (SCO), a structure thought to play a role in non-communicating hydrocephalus, was...
The oviduct is an important organ in reproduction where fertilization occurs, and through which the fertilized eggs are carried to the uterus in mammals. This organ is highly polarized, where the epithelium forms longitudinal folds along the ovary-uterus axis, and the epithelial multicilia beat towards the uterus to transport the ovulated ova. Here, we analyzed the postnatal development of mouse oviduct and report that multilevel polarities of the oviduct are regulated by a planar cell polarity (PCP) gene, Celsr1. In the epithelium, Celsr1 is concentrated in the specific cellular boundaries perpendicular to the ovary-uterus axis from postnatal day 2. We found a new feature of cellular polarity in the oviduct -the apical surface of epithelial cells is elongated along the ovary-uterus axis. In Celsr1-deficient mice, the ciliary motion is not orchestrated along the ovary-uterus axis and the transport ability of beating cilia is impaired. Epithelial cells show less elongation and randomized orientation, and epithelial folds show randomized directionality and ectopic branches in the mutant. Our mosaic analysis suggests that the geometry of epithelial cells is primarily regulated by Celsr1 and as a consequence the epithelial folds are aligned. Taken together, we reveal the characteristics of the multilevel polarity formation processes in the mouse oviduct epithelium and suggest a novel function of the PCP pathway for proper tissue morphogenesis.
Morphogenesis of the heart requires development of the endocardial cushion tissue that gives rise to the membranous septa and valves. Here we show that Meltrin beta/ADAM19, a novel metalloprotease-disintegrin, participates in the development of the endocardial cushion. Mice lacking Meltrin beta exhibit ventricular septal defect (VSD) and immature valves, and most of the animals die soon after birth. During development of the endocardial cushion, epithelial-mesenchymal transformation (EMT) of endocardial epithelial cells generates most of the cushion mesenchymes that constitute the main components of the septa and valves. Meltrin beta is expressed in both the epithelia and the mesenchymes of the endocardial cushion. In the absence of Meltrin beta, the cushion is small or thin in the septum-forming region and show poor remodeling of cardiac jelly components; both of these characteristics suggest impaired growth and differentiation of the endocardial cushion. When embryonic fibroblasts are cultured sparsely, Meltrin beta-lacking cells exhibit aberrant ectodomain shedding of type I Neuregulin, one of the ErbB ligands expressed in endocardial cells. These results suggest the necessity of proteolytic regulation of ErbB ligands by Meltrin beta for proper heart development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.