In this paper, we propose two hybrid gradient based methods and genetic algorithm for solving systems of linear equations with fast convergence. The first proposed hybrid method is obtained by using the steepest descent method and the second one by the Cauchy-Barzilai-Borwein method. These algorithms are based on minimizing the residual of solution which has genetic characteristics. They are compared with the normal genetic algorithm and standard gradient based methods in order to show the accuracy and the convergence speed of them. Since the conjugate gradient method is recommended for solving large sparse and symmetric positive definite matrices, we also compare the numerical results of our proposed algorithms with this method. The numerical results demonstrate the robustness and efficiency of the proposed algorithms. Moreover, we observe that our hybridization of the CBB method and genetic algorithm gives more accurate results with faster convergence than other mentioned methods in all given cases
The major stationary iterative method used to solve nonlinear optimization problems is the quasi-Newton (QN) method. Symmetric Rank-One (SR1) is a method in the quasi-Newton family. This algorithm converges towards the true Hessian fast and has computational advantages for sparse or partially separable problems [1]. Thus, investigating the efficiency of the SR1 algorithm is significant. It's possible that the matrix generated by SR1 update won't always be positive. The denominator may also vanish or become zero. To overcome the drawbacks of the SR1 method, resulting in better performance than the standard SR1 method, in this work, we derive a new vector π¦π¦ ππ * depending on the Barzilai-Borwein step size to obtain a new SR1 method. Then using this updating formula with preconditioning conjugate gradient (PCG) method is presented. With the aid of inexact line search procedure by strong Wolfe conditions, the new SR1 method is proposed and its performance is evaluated in comparison to the conventional SR1 method. It is proven that the updated matrix of the new SR1 method, π»π» ππ+1 ππππππ , is symmetric matrix and positive definite matrix, given π»π» ππ is initialized to identity matrix. In this study, the proposed method solved 13 problems effectively in terms of the number of iterations (NI) and the number of function evaluations (NF). Regarding NF, the new SR1 method also outperformed the classic SR1 method. The proposed method is shown to be more efficient in solving relatively large-scale problems (5,000 variables) compared to the original method. From the numerical results, the proposed method turned out to be significantly faster, effective and suitable for solving large dimension nonlinear equations
The steepest descent (SD) method is well-known as the simplest method in optimization. In this paper, we propose a new SD search direction for solving system of linear equations Ax = b. We also prove that the proposed SD method with exact line search satisfies descent condition and possesses global convergence properties. This proposed method is motivated by previous work on the SD method by Zubai'ah-Mustafa-Rivaie-Ismail (ZMRI) [2]. Numerical comparisons with a classical SD algorithm and ZMRI algorithm show that this algorithm is very effective depending on the number of iterations (NOI) and CPU time.
In this paper, we propose a modification of the self-scaling quasi-Newton (DFP) method for unconstrained optimization using logistic mapping. We shoe that it produces a positive definite matrix. Numerical results demonstrate that the new algorithm is superior to standard DFP method with respect to the NOI and NOF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.