Viruses encoding a replication-associated protein (Rep) within a covalently closed, single-stranded (ss)DNA genome are among the smallest viruses known to infect eukaryotic organisms, including economically valuable agricultural crops and livestock. Although circular Rep-encoding ssDNA (CRESS DNA) viruses are a widespread group for which our knowledge is rapidly expanding, biased sampling toward vertebrates and land plants has limited our understanding of their diversity and evolution. Here, we screened terrestrial arthropods for CRESS DNA viruses and report the identification of 44 viral genomes and replicons associated with specimens representing all three major terrestrial arthropod lineages, namely Euchelicerata (spiders), Hexapoda (insects), and Myriapoda (millipedes). We identified virus genomes belonging to three established CRESS DNA viral families (Circoviridae, Genomoviridae, and Smacoviridae); however, over half of the arthropod-associated viral genomes are only distantly related to currently classified CRESS DNA viral sequences. Although members of viral and satellite families known to infect plants (Geminiviridae, Nanoviridae, Alphasatellitidae) were not identified in this study, these plant-infecting CRESS DNA viruses and replicons are transmitted by hemipterans. Therefore, members from six out of the seven established CRESS DNA viral families circulate among arthropods. Furthermore, a phylogenetic analysis of Reps, including endogenous viral sequences, reported to date from a wide array of organisms revealed that most of the known CRESS DNA viral diversity circulates among invertebrates. Our results highlight the vast and unexplored diversity of CRESS DNA viruses among invertebrates and parallel findings from RNA viral discovery efforts in undersampled taxa.
Humans are infected with two distinct strains (Type 1 (T1) and Type 2 (T2)) of Epstein-Barr virus (EBV) that differ substantially in their EBNA2 and EBNA 3A/B/C latency genes and the ability to transform B cells in vitro. While most T1 EBV strains contain the "prototype" form of the BZLF1 immediate-early promoter ("Zp-P"), all T2 strains contain the "Zp-V3" variant, which contains an NFAT binding motif and is activated much more strongly by B-cell receptor signalling. Whether B cells infected with T2 EBV are more lytic than cells infected with T1 EBV is unknown. Here we show that B cells infected with T2 EBV strains (AG876 and BL5) have much more lytic protein expression compared to B cells infected with T1 EBV strains (M81, Akata, and Mutu) in both a cord blood-humanized (CBH) mouse model and EBVtransformed lymphoblastoid cell lines (LCLs). Although T2 LCLs grow more slowly than T1 LCLs, both EBV types induce B-cell lymphomas in CBH mice. T1 EBV strains (M81 and Akata) containing Zp-V3 are less lytic than T2 EBV strains, suggesting that Zp-V3 is not sufficient to confer a lytic phenotype. Instead, we find that T2 LCLs express much higher levels of activated NFATc1 and NFATc2, and that cyclosporine (an NFAT inhibitor) and knockdown of NFATc2 attenuate constitutive lytic infection in T2 LCLs. Both NFATc1 and NFATc2 induce lytic EBV gene expression when combined with activated CAMKIV (which is activated by calcium signaling and activates MEF2D) in Burkitt Akata cells. Together, these results suggest that B cells infected with T2 EBV are more lytic due to increased activity of the cellular NFATc1/c2 transcription factors in addition to the universal presence of the Zp-V3 form of BZLF1 promoter.
Human immunodeficiency virus (HIV) replication is strongly dependent upon a programmed ribosomal frameshift. Here we investigate the relationships between the thermodynamic stability of the HIV type 1 (HIV-1) RNA frameshift site stem-loop, frameshift efficiency, and infectivity, using pseudotyped HIV-1 and HEK293T cells. The data reveal a strong correlation between frameshift efficiency and local, but not overall, RNA thermodynamic stability. Mutations that modestly increase the local stability of the frameshift site RNA stem-loop structure increase frameshift efficiency 2-fold to 3-fold in cells. Thus, frameshift efficiency is determined by the strength of the thermodynamic barrier encountered by the ribosome. These data agree with previous in vitro measurements, suggesting that there are no virus-or host-specific factors that modulate frameshifting. The data also indicate that there are no sequence-specific requirements for the frameshift site stem-loop. A linear correlation between Gagpolymerase (Gag-Pol) levels in cells and levels in virions supports the idea of a stochastic virion assembly mechanism. We further demonstrate that the surrounding genomic RNA secondary structure influences frameshift efficiency and that a mutation that commonly arises in response to protease inhibitor therapy creates a functional but inefficient secondary slippery site. Finally, HIV-1 mutants with enhanced frameshift efficiencies are significantly less infectious, suggesting that compounds that increase frameshift efficiency by as little as 2-fold may be effective at suppressing HIV-1 replication. IMPORTANCEHIV, like many retroviruses, utilizes a ؊1 programmed ribosomal frameshift to generate viral enzymes in the form of a Gag-Pol polyprotein precursor. Thus, frameshifting is essential for viral replication. Here, we utilized a panel of mutant HIV strains to demonstrate that in cells, frameshifting efficiency is correlated with the stability of the local thermodynamic barrier to ribosomal translocation. Increasing the stability of the frameshift site RNA increases the frameshift efficiency 2-fold to 3-fold. Mutant viruses with increased frameshift efficiencies have significantly reduced infectivity. These data suggest that this effect might be exploited in the development of novel antiviral strategies. The genome of human immunodeficiency virus type 1 (HIV-1), like that of other retroviruses, has three genes that encode the structural proteins Gag, polymerase (Pol), and Env. The expression of the gag gene results in the synthesis of the Gag precursor protein, p55, which is subsequently processed by the viral protease to release the mature Gag proteins p17 (matrix protein), p24 (capsid), p15 (nucleocapsid), and p6 (late domain) and two so-called spacer peptides (SP) that flank p15, namely, p2 (SP1) and p1 (SP2), respectively (1). The synthesis of Gag precursor protein alone is sufficient for the assembly and release of noninfectious virus-like particles (VLPs) (2). The pol gene codes for the p160 polyprotein, which is su...
HIV-1 generates unspliced (US), partially spliced (PS), and completely spliced (CS) classes of RNAs, each playing distinct roles in viral replication. Elucidating their host protein ‘interactomes’ is crucial to understanding virus-host interplay. Here, we present HyPR-MSSV for isolation of US, PS, and CS transcripts from a single population of infected CD4+ T-cells and mass spectrometric identification of their in vivo protein interactomes. Analysis revealed 212 proteins differentially associated with the unique RNA classes, including preferential association of regulators of RNA stability with US and PS transcripts and, unexpectedly, mitochondria-linked proteins with US transcripts. Remarkably, >80 of these factors screened by siRNA knockdown impacted HIV-1 gene expression. Fluorescence microscopy confirmed several to co-localize with HIV-1 US RNA and exhibit changes in abundance and/or localization over the course of infection. This study validates HyPR-MSSV for discovery of viral splice variant protein interactomes and provides an unprecedented resource of factors and pathways likely important to HIV-1 replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.