Bencana hidrometeorologi adalah bencana yang dipengaruhi oleh parameter meteorologi yang meliputi aspek cuaca seperti curah hujan, angin, suhu, dan kelembaban. Salah satu bencana hidrometeorologi yang terjadi di Indonesia yaitu banjir. Dalam 8 tahun terakhir, telah terjadi banjir di DAS Jali Cokroyasan yang menggenangi sebagian Kabupaten Purworejo. Penelitian dilakukan untuk mengetahui tingkat kerawanan banjir di DAS Jali Cokroyasan. Penggunaan teknologi penginderaan jauh dan Sistem Informasi Geografi (SIG) diaplikasikan untuk memetakan tingkat kerawanan banjir di DAS Jali Cokroyasan. Parameter yang digunakan antara lain curah hujan, penggunaan lahan, kemiringan lereng, dan bentuklahan. Data curah hujan didapatkan dari Dinas Pertanian Peternakan Kelautan dan Perikanan Kabupaten Purworejo. Data penggunaan lahan didapatkan dari citra Landsat 8 OLI yang diolah berdasarkan klasifikasi multispektral tidak terselia. Data kemiringan lereng diekstraksi dari DEM ALOS PALSAR dengan resolusi 10 m. Data bentuklahan dihasilkan dari interpretasi visual DEM ALOS PALSAR dan citra Landsat 8 OLI. Semua parameter diproses dengan analisis spasial berdasarkan metode skoring Analytical Hierarchy Process (AHP) dan metode overlay Spatial Multi Criteria Evaluation (SMCE). Pengujian model dilakukan dengan metode in depth interview. Hasil analisis berupa peta tingkat kerawanan banjir di DAS Jali Cokroyasan. Berdasarkan peta tersebut, hilir DAS yang mendekati outlet DAS menjadi area yang rawan terjadinya bencana banjir luapan karena hilir DAS memiliki topografi yang landai. Zonasi tingkat kerawanan pada peta diharapkan menjadi bahan pertimbangan dalam menanggulangi resiko akibat banjir, meningkatkan kapasitas masyarakat, dan meminimalisasi kerugian akibat bencana.
Purworejo is one of the potential area that could be experiencing landslides, because the geomorphological conditions which are included in Menoreh Hills are geographically sloping to very steep. Based on the Indonesian Disaster Information Data (DIBI) and the National Disaster Management Agency (BNPB) in the last five years from 2014 to April 2019 there have been 64 landslides in Purworejo. The research on landslide vulnerability mapping has been done with various spatial modeling methods, one of them is using Information Value Model (IVM). There are four landslide factors arranging the model, such as elevation, slope, slope direction and vegetation index (NDVI). The purpose of this research is to determine the most influence factors towards landslide vulnerability levels thorugh remote sensing data. Multiple regression analysis is used to determine the most influential factors. In this research, dependent variable represented by eight landslide factors, and the independent variable is vurnerability level of landslide in Purworejo. The results of this study explain that the predictor variables that most influence the occurrence of landslides in Purworejo are elevations with regression values that are quite dominant among other variables.
Indonesia is one of the disaster-prone countries. Based on the Indonesian Disaster Information Data (DIBI) and the National Disaster Management Agency (BNPB) in the last five years from 2014 to April 2019 there have been 65 landslides in Purworejo. Landslide is one of the most common disaster that occur in Indonesia. Landslide is caused by meteorological and geomorphological factors. Purworejo is one of the potential areas that could be experiencing landslides, because the geomorphological conditions which are included in Menoreh Hills are geographically sloping to very steep. Landslide susceptibility modeling in Purworejo Regency was carried out using three different methods, namely Information Value Model (IVM), Information Value Model-Analytical Hierarchy Process (IVM-AHP) and Information Value Model-Gray Clustering (IVM-GC). The difference between this research and the landslide modeling research that has been done previously is in the geovisualization section. Research that has been done to model landslide vulnerability is visualized in the form of a two-dimensional map. This research develops visualization techniques with the aim of making reading easier, increasing traction, and adding height information and impressions to map readers.The visualization used is 3-dimensional mapping. This mapping is intended to make it easier to compare the map results of modeling that have been done before. The expected results of this study are accurate and reliable 3-dimensional visualization to study the advantages and disadvantages of each of the modeling methods used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.