Abstract. This paper presents an overview of the ImageCLEF 2017 evaluation campaign, an event that was organized as part of the CLEF (Conference and Labs of the Evaluation Forum) labs 2017. ImageCLEF is an ongoing initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval for providing information access to collections of images in various usage scenarios and domains. In 2017, the 15th edition of ImageCLEF, three main tasks were proposed and one pilot task: 1) a LifeLog task about searching in LifeLog data, so videos, images and other sources; 2) a caption prediction task that aims at predicting the caption of a figure from the biomedical literature based on the figure alone; 3) a tuberculosis task that aims at detecting the tuberculosis type from CT (Computed Tomography) volumes of the lung and also the drug resistance of the tuberculosis; and 4) a remote sensing pilot task that aims at predicting population density based on satellite images. The strong participation of over 150 research groups registering for the four tasks and 27 groups submitting results shows the interest in this benchmarking campaign despite the fact that all four tasks were new and had to create their own community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.