In the marble industry, a lot of marble is wasted in the form of odd blocks of various sizes and slurry consisting of water and micro-fine particles. The slurry on drying converts into powder. Both slurry and powder have adverse effects on the environment. This research is focused on the gainful utilization of waste marble powder (WMP) by converting it into a valuable binding material. For this purpose, WMP and clay were collected, and their physical and chemical properties were determined. A mix of WMP and clay was prepared and burnt at a temperature around 1300 oC. The burnt mix was ground to powder form to get marble cement (MC). The MC was then used in mortar. The compressive and flexural strengths of mortar cubes and prisms were determined. Apart from this, X-ray diffraction (XRD) analysis, thermo-gravimetric analysis (TGA) and scanning electron microscopic (SEM) analysis were also carried out. The chemical composition showed that the MC has 52.5% di-calcium silicate (C2S) and 3.5% tri-calcium silicate (C3S).The compressive strength of MC mortar after 28 days curing is 6.03 MPa, which is higher than M1 mortar of building code of Pakistan (5 MPa). The compressive strength of MC mortar after one year is 20.67 MPa, which is only 17% less than OPC mortar.
The subgrade soil of western by Pass Road Mardan, Pakistan consists of silty clay belonging to A-6(14) group of the AASHTO soil classification system. The average natural moisture content of the soil is more than 18% which makes it susceptible to water logging and problematic for pavement construction. The aim of this research is to improve the supporting power of the existing subgrade material to carry the proposed traffic safely. For this purpose, lime was incorporated into the soil. Soil samples were prepared containing 0, 4, 6, 8, 10 and 12% lime by weight of the soil. Laboratory tests were conducted for determining particle size distribution, Atterberg limits, optimum moisture contents and maximum dry density and California Bearing Ratio (CBR). From this study it was found that the CBR initially increased with increase in lime content, reaching to a maximum value (35.50 %) at 6% lime content and then decreased with further increase in lime content. The optimum lime content for CBR was found as 6.50% (w/w), which enhanced CBR value by 337% compared to control. A consistent decrease from 1.92 at 0 to 1.763 (g/cm3) at 12% lime was observed suggesting compaction in the material. Results suggested that liming subgrade material is a viable option for improving pavement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.