Long‐term potentiation (LTP) and depression (LTD) were investigated at synapses formed by pairs of monosynaptically connected CA3 pyramidal cells in rat hippocampal slice cultures.
An N‐methyl‐D‐aspartate (NMDA) receptor‐mediated component of the unitary EPSP, elicited at the resting membrane potential in response to single action potentials in an individual CA3 cell, could be isolated pharmacologically.
Associative LTP was induced when single presynaptic action potentials were repeatedly paired with 240 ms postsynaptic depolarizing pulses that evoked five to twelve action potentials or with single postsynaptic action potentials evoked near the peak of the unitary EPSP. LTP induction was prevented by an NMDA receptor antagonist.
Associative LTD was induced when single presynaptic action potentials were repeatedly elicited with a certain delay after either 240 ms postsynaptic depolarizing pulses or single postsynaptic action potentials. The time window within which presynaptic activity had to occur for LTD induction was dependent on the amount of postsynaptic depolarization. LTD was induced if single pre‐ and postsynaptic action potentials occurred synchronously.
Homosynaptic LTD was induced by 3 Hz tetanization of the presynaptic neuron for 3 min and was blocked by an NMDA receptor antagonist.
Depotentiation was produced with stimulation protocols that elicit either homosynaptic or associative LTD.
Recurrent excitatory synapses between CA3 cells display associative potentiation and depression. The sign of the change in synaptic strength is a function of the relative timing of pre‐ and postsynaptic action potentials.
3. When two action potentials were elicited in the presynaptic cell, the amplitude of the second EPSC was inversely related to the amplitude of the first. Paired-pulse facilitation (PPF) was observed when the first EPSC was small, i.e. the second EPSC was larger than the first, whereas paired-pulse depression (PPD) was observed when the first EPSC was large. 4. The number of trials displaying PPD was greater when release probability was increased, and smaller when release probability was decreased. 5. PPD was not postsynaptically mediated because it was unaffected by decreasing ionic flux with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or receptor desensitization with aniracetam.6. PPF was maximal at an interstimulus interval of 70 ms and recovered within 500 ms. Recovery from PPD occurred within 5 s. 7. We propose that multiple release sites are formed by the axon of a CA3 pyramidal cell and a single postsynaptic CAl or CA3 cell. PPF is observed if the first action potential fails to release transmitter at most release sites. PPD is observed if the first action potential successfully triggers release at most release sites. 8. Our observations of PPF are consistent with the residual calcium hypothesis. We conclude that PPD results from a decrease in quantal content, perhaps due to short-term depletion of readily releasable vesicles.
We investigated the influence of synaptically released glutamate on postsynaptic structure by comparing the effects of deafferentation, receptor antagonists and blockers of glutamate release in hippocampal slice cultures. CA1 pyramidal cell spine density and length decreased after transection of Schaffer collaterals and after application of AMPA receptor antagonists or botulinum toxin to unlesioned cultures. Loss of spines induced by lesion or by botulinum toxin was prevented by simultaneous AMPA application. Tetrodotoxin did not affect spine density. Synaptically released glutamate thus exerts a trophic effect on spines by acting at AMPA receptors. We conclude that AMPA receptor activation by spontaneous vesicular glutamate release is sufficient to maintain dendritic spines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.