We propose a novel method for Acoustic Event Detection (AED). In contrast to speech, sounds coming from acoustic events may be produced by a wide variety of sources. Furthermore, distinguishing them often requires analyzing an extended time period due to the lack of a clear sub-word unit. In order to incorporate the long-time frequency structure for AED, we introduce a convolutional neural network (CNN) with a large input field. In contrast to previous works, this enables to train audio event detection end-to-end. Our architecture is inspired by the success of VGGNet [1] and uses small, 3×3 convolutions, but more depth than previous methods in AED. In order to prevent over-fitting and to take full advantage of the modeling capabilities of our network, we further propose a novel data augmentation method to introduce data variation. Experimental results show that our CNN significantly outperforms state of the art methods including Bag of Audio Words (BoAW) and classical CNNs, achieving a 16% absolute improvement.
Abstract-Feature subset selection, as a special case of the general subset selection problem, has been the topic of a considerable number of studies due to the growing importance of data-mining applications. In the feature subset selection problem there are two main issues that need to be addressed: (i) Finding an appropriate measure function than can be fairly fast and robustly computed for high-dimensional data. (ii) A search strategy to optimize the measure over the subset space in a reasonable amount of time. In this article mutual information between features and class labels is considered to be the measure function. Two series expansions for mutual information are proposed, and it is shown that most heuristic criteria suggested in the literature are truncated approximations of these expansions. It is well-known that searching the whole subset space is an NP-hard problem. Here, instead of the conventional sequential search algorithms, we suggest a parallel search strategy based on semidefinite programming (SDP) that can search through the subset space in polynomial time. By exploiting the similarities between the proposed algorithm and an instance of the maximumcut problem in graph theory, the approximation ratio of this algorithm is derived and is compared with the approximation ratio of the backward elimination method. The experiments show that it can be misleading to judge the quality of a measure solely based on the classification accuracy, without taking the effect of the non-optimum search strategy into account.
In multilingual countries, text-to-speech synthesis systems often have to deal with texts containing inclusions of multiple other languages in form of phrases, words, or even parts of words. In such multilingual cultural settings, listeners expect a high-quality text-to-speech synthesis system to read such texts in a way that the origin of the inclusions is heard, i.e., with correct language-specific pronunciation and prosody. The challenge for a text analysis component of a text-to-speech synthesis system is to derive from mixedlingual sentences the correct polyglot phone sequence and all information necessary to generate natural sounding polyglot prosody.This article presents a new approach to analyze mixed-lingual sentences. This approach centers around a modular, mixed-lingual morphological and syntactic analyzer, which additionally provides accurate language identification on morpheme level and word and sentence boundary identification in mixed-lingual texts. This approach can also be applied to word identification in languages without a designated word boundary symbol like Chinese or Japanese. To date, this mixed-lingual text analysis supports any mixture of English, French, German, Italian, and Spanish. Because of its modular design it is easily extensible to additional languages.
We describe here a collection of speech data of bilingual and trilingual speakers of English, French, German and Italian. In the context of speech to speech translation (S2ST), this database is designed for several purposes and studies: training CLSA systems (cross-language speaker adaptation), conveying emphasis through S2ST systems, and evaluating TTS systems. More precisely, 36 speakers judged as accentless (22 bilingual and 14 trilingual speakers) were recorded for a set of 171 prompts in two or three languages, amounting to a total of 24 hours of speech. These sets of prompts include 100 sentences from news, 25 sentences from Europarl, the same 25 sentences with one acted emphasised word, 20 semantically unpredictable sentences, and finally a 240-word long text. All in all, it yielded 64 bilingual session pairs of the six possible combinations of the four languages. The database is freely available for non-commercial use and scientific research purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.