A numerical study of space charge effects in multilayer organic light-emitting diodes ͑OLEDs͒ is presented. The method of solving the coupled Poisson and continuity equations, previously established for single-layer polymer LEDs, has been extended to treat internal organic interfaces. In addition, we consider the transient current and electroluminescence response. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution. Comparison to experimental transient data of a typical bilayer LED based on tris͑8-hydroxyquinolinato͒aluminum (Alq 3) is provided and good agreement is found. Our results are consistent with commonly assumed operating principles of bilayer LEDs. In particular, the assumptions that the electric field is predominantly dropped across the Alq 3 layer and that the electroluminescence delay time is determined by electrons passing through Alq 3 to the internal interface are self-consistently supported by the results of the simulation. Moreover, the creation of emissive singlet excitons is found to be strongly confined to the Alq 3 side of the internal interface and the emission zone width is dictated by the exciton diffusion length. Design principles for trilayer LEDs with improved power efficiency are also discussed.
A dielectric capping layer has been used to increase the light output and to tune the spectral characteristics of top-emitting, phosphorescent organic light-emitting devices (OLEDs). By controlling the thickness of the dielectric layer deposited on top of a thin metal cathode, the transmittance of the top electrode can be adjusted. Maximum light output is not achieved at highest cathode transmittance, indicating that the interplay between different interference effects can be controlled by means of the capping-layer thickness. Furthermore, we demonstrate that the electrical device characteristic is not influenced by the capping layer. The strength of our concept in particular lies in the fact that the optical and the electrical device performance can be optimized separately. Using the capping-layer concept, we have achieved an OLED efficiency of 64 cd/A with pure green emission.
A comprehensive opto-electronic device model for organic bulk-heterojunction solar cells is presented. First the optical in-coupling into a multilayer stack is calculated. From the photon absorption profile a charge transfer (CT) exciton profile is derived. In this study we consider the Onsager-Braun mechanism to calculate the dissociation of the CT-excitons into free charge carriers. These free charge carriers then migrate towards the electrodes under the influence of drift and diffusion. A general problem arising in computer simulations is the number of material and device parameters, which have to be determined by dedicated experiments and simulation-based parameter extraction. In this study we analyze measurements of the short-circuit current dependence on the active layer thickness and current-voltage curves in poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) based solar cells. We have identified a set of parameter values including dissociation parameters that describe the experimental data. The overall agreement of our model with experiment is good, however a discrepancy in the thickness dependence of the currentvoltage curve questions the influence of the electric field in the dissociation process. In addition transient simulations are analyzed which show that a measurement of the turn-off photocurrent can be useful for estimating charge carrier mobilities.
We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC70BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.