Associations between genotypes and cognitive outcomes may provide clues as to which mechanisms cause individual differences in old-age cognitive performance. We investigated the effects of five polymorphisms on cognitive functioning in a population-based sample of 2,694 persons without dementia (60-102 years). A structural equation model (SEM) was fit to the cognitive data, yielding five specific latent factors (perceptual speed, episodic memory, semantic memory, category fluency, and letter fluency), as well as a global cognitive factor. These factors showed the expected associations with chronological age. Genotyping was performed for five single-nucleotide polymorphisms that have been associated with cognitive performance: APOE (rs429358), COMT (rs4680), BDNF (rs6265), KIBRA (rs17070145), and CLSTN2 (rs6439886). After controlling for age, gender, and education, as well as correcting for multiple comparisons, we observed negative effects of being an APOE ε4 carrier on episodic memory and perceptual speed. Furthermore, being a CLSTN2 TT carrier was associated with poorer semantic memory. For the global factor, the same pattern of results was observed. In addition, being a BDNF any A carrier was associated with better cognitive performance. Also, older age was associated with stronger genetic effects of APOE on global cognition. However, this interaction effect was partly driven by the presence of preclinical dementia cases in our sample. Similarly, excluding future dementia cases attenuated the effects of APOE on episodic memory and global cognition, suggesting that part of the effects of APOE on old-age cognitive performance may be driven by dementia-related processes.
PICALM, BIN1, CLU, and APOE are top candidate genes for Alzheimer's disease, and they influence episodic memory performance in old age. Physical activity, however, has been shown to protect against age-related decline and counteract genetic influences on cognition. The aims of this study were to assess whether (a) a genetic risk constellation of PICALM, BIN1, and CLU polymorphisms influences cognitive performance in old age; and (b) if physical activity moderates this effect. Data from the SNAC-K population-based study were used, including 2,480 individuals (age range = 60 to 100 years) free of dementia at baseline and at 3- to 6-year follow-ups. Tasks assessing episodic memory, perceptual speed, knowledge, and verbal fluency were administered. Physical activity was measured using self-reports. Individuals who had engaged in frequent health- or fitness-enhancing activities within the past year were compared with those who were inactive. Genetic risk scores were computed based on an integration of risk alleles for PICALM (rs3851179 G allele, rs541458 T allele), BIN1 (rs744373 G allele), and CLU (rs11136000 T allele). High genetic risk was associated with reduced episodic memory performance, controlling for age, education, vascular risk factors, chronic diseases, activities of daily living, and APOE gene status. Critically, physical activity attenuated the effects of genetic risk on episodic memory. Our findings suggest that participants with high genetic risk who maintain a physically active lifestyle show selective benefits in episodic memory performance.
As the population steadily ages, dementia, in all its forms, remains a great societal challenge. Yet, our knowledge of their etiology remains rather limited. To this end, genetic studies can give us insight into the underlying mechanisms that lead to the development of dementia, potentially facilitating treatments in the future. In this review we cover the most recent genetic risk factors associated with the onset of the four most common dementia types today, including Alzheimer's disease (AD), Vascular Dementia (VaD), Frontotemporal Lobar Degeneration (FTLD) and Lewy Body Dementia (LBD). Moreover, we discuss the overlap in major underlying pathologies of dementia derived from their genetic associations. While all four dementia types appear to involve genes associated with tau-pathology and neuroinflammation only LBD, AD and VaD appear to involve amyloid genes while LBD and FTLD share alpha synuclein genes. Together these findings suggest that some of the dementias may exist along a spectrum and demonstrates the necessity to conduct large-scale studies pinpointing the etiology of the dementias and potential gene and environment interactions that may influence their development.
Physical activity has been positively associated with gray-matter integrity. In contrast, pro-inflammatory cytokines seem to have negative effects on the aging brain and have been related to dementia. It was investigated whether an inactive lifestyle and high levels of inflammation resulted in smaller gray-matter volumes and predicted cognitive decline across 6 years in a population-based study of older adults (n = 414). Self-reported physical activity (fitness-enhancing, health-enhancing, inadequate) was linked to gray-matter volume, such that individuals with inadequate physical activity had the least gray matter. There were no overall associations between different pro-and anti-inflammatory markers (IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, G-CSF, and TNF-α) and gray-matter integrity. However, persons with inadequate activity and high levels of the pro-inflammatory marker IL-12p40 had smaller volumes of lateral prefrontal cortex and hippocampus and declined more on the Mini-Mental State Examination test over 6 years compared with physically inactive individuals with low levels of IL-12p40 and to more physically active persons, irrespective of their levels of IL-12p40. These patterns of data suggested that inflammation was particularly detrimental in inactive older adults and may exacerbate the negative effects of physical inactivity on brain and cognition in old age. Hum Brain Mapp 37:3462-3473, 2016. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.