Speed of Visual Sensorimotor Processes and Conductivity of Visual Pathway in Volleyball Players Volleyball is a dynamic game which requires a high level of visual skills. The first aim of this study was to investigate the several aspects of reaction times (RT) to visual stimuli in volleyball players (12) compared to non-athletic subjects (12). By using the tests included in the Vienna Test System (Schuhfried, Austria), simple reaction time (SRT), choice reaction time (CRT) and peripheral reaction time (PRT) were examined. The second aim of this study was to assess the neurophysiological basis of early visual sensory processing in both examined groups. We measured two sets of pattern-reversal visual evoked potentials (VEPs) during monocular central field stimulation (Reti Scan, Roland Consult, Germany). The latencies of waves N75, P100 and N135 were determined. We observed significantly shorter (p<0.05) total reaction time to stimuli appearing in the central and peripheral field of vision in the volleyball players compared to non-athletes. With regard to SRT and CRT the main differences between the groups appeared in pre-motor reaction times. Volleyball players had shorter VEPs P100 wave latencies (p<0.05) than the non-athlete group. The results indicate faster signal transmission in visual pathways in athletes than in non-athletes. This fact can be attributed to the effect of rapid visual-activity-demanding sports on the central nervous system.
The level of PA recommended by WHO has a positive impact on the perceived QoL. Possible differences are visible mostly in the assessment of different domains of life in relation to the presented levels of PA.
The ability to quickly locate objects within the visual field has a significant influence on athletic performance. Saccades are conjugate eye movements responsible for the rapid shift that brings a new part of the visual field into foveal vision. The aim of this study was to investigate the effects of sport expertise and intense physical effort on saccade dynamics during a free-viewing visual search task in skilled soccer players. Two groups of male subjects participated in this study: 18 soccer players and 18 non-athletes as the control group. Two sessions of visual search tasks without a sport-specific design were employed. Eye movements during the visual search tasks were recorded binocularly. Between pre-and post-test sessions, athletes performed a maximal incremental treadmill test. Cardiorespiratory parameters were measured continuously. Capillary lactate samples were collected. Pre-test findings indicated that athletes, in comparison to non-athletes, achieve higher values of the following characteristics of saccades (1) average acceleration, (2) acceleration peak, (3) deceleration peak, and (4) average velocity. An increase in post-test saccade duration and a decrease in post-test saccade velocity was observed in athletes due to the strenuous physical effort in relation to the pre-test state. Athletes may transfer high saccadic function efficiency to non-specific visual stimuli. The findings partially confirm that physical exertion can reduce oculomotor efficiency in athletes.
Although previous studies have reported an association between physical activity (PA) and myopia in school-aged children, little is known about the link between myopia and children’s functional status. The purpose of this study was to investigate dynamic balance control in relation to the daily PA levels of myopic schoolchildren aged 9–11 years (n = 52) versus a non-myopic control group (n = 53). A single leg stance test performed on the instability platform of the Biodex Balance System was used to assess balance control. The overall stability index (OSI), anterior-posterior stability index (APSI) and medial-lateral stability index (MLSI) were analyzed. PA levels were calculated using the World Health Organization European Childhood Obesity Surveillance Initiative family record form. Myopes and non-myopes were separated into three subgroups based on PA level (low, moderate and high). Myopia significantly affected OSI (F = 40.46, p < 0.001), APSI (F = 33.93, p < 0.001) and MLSI (F = 49.51, p < 0.001). There were significant differences (p < 0.001) between myopic and non-myopic children with low and moderate levels of PA, whilst there were no differences between compared children with high levels of PA. High PA levels had a positive impact on balance control in myopes. Our results showed that PA levels moderate the relationship between myopia and children’s functional status.
In this study, we conducted an experiment in which we analyzed the possibilities to develop visual skills by specifically targeted training of visual search. The aim of our study was to investigate whether, for how long and to what extent a training program for visual functions could improve visual search. The study involved 24 healthy students from the Szczecin University who were divided into two groups: experimental (12) and control (12). In addition to regular sports and recreational activities of the curriculum, the subjects of the experimental group also participated in 8-week long training with visual functions, 3 times a week for 45 min. The Signal Test of the Vienna Test System was performed four times: before entering the study, after first 4 weeks of the experiment, immediately after its completion and 4 weeks after the study terminated. The results of this experiment proved that an 8-week long perceptual training program significantly differentiated the plot of visual detecting time. For the visual detecting time changes, the first factor, Group, was significant as a main effect (F(1,22)=6.49, p<0.05) as well as the second factor, Training (F(3,66)=5.06, p<0.01). The interaction between the two factors (Group vs. Training) of perceptual training was F(3,66)=6.82 (p<0.001). Similarly, for the number of correct reactions, there was a main effect of a Group factor (F(1,22)=23.40, p<0.001), a main effect of a Training factor (F(3,66)=11.60, p<0.001) and a significant interaction between factors (Group vs. Training) (F(3,66)=10.33, p<0.001). Our study suggests that 8-week training of visual functions can improve visual search performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.