A field experiment was carried out in 2016–2018 in a white lupin (Lupinus albus L.)-winter wheat (Triticum aestivum cv. ‘Bogatka’) crop rotation. The aim of this study was to determine the amount of nitrogen (N) that was biologically fixed by the white lupin crop in the first year of the rotation and to estimate how much of this N was then taken up from the lupin residues by winter wheat in the second and third years of the rotation. Biologically fixed N was determined by the isotope-dilution method (ID15N) by applying 30 kg N ha−1 of 15N-labeled fertilizer (15NH4)2SO4 (containing 20.1 at.% 15N) to the white lupin and the reference plant spring wheat. The yields of white lupin seeds and crop residues were 3.92 t ha−1 and 4.30 t ha−1, respectively. The total amount of N in the white lupin biomass was 243.2 kg ha−1, which included 209.3 kg ha−1 in the seeds and 33.9 kg ha−1 in the residues. The 15N-labeled residue of white lupin was cut and ploughed into soil. Our results indicate that 111.2 kg N ha−1 was fixed from the atmosphere by the lupin plants, with 93.7 kg ha−1 found in the seeds and 17.5 kg ha−1 in the residues. In the second and third years of the rotation when winter wheat was cultivated, the plots were divided into two groups of subplots (1) without N-fertilization (control) and (2) with an application of 100 kg N ha−1. In the first year of winter wheat cultivation, 20.0% and 21.0% of N from the crop residues was taken up by the control and N-fertilization plots, respectively, while in the second year, uptake was lower at 7.12% and 9.27% in the control and N-fertilized plots, respectively.
Rationale
Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15N in NO3− and NH4+ and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking.
Methods
Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15N in NO3− and NH4+. The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2O (CM‐N2O) or N2 (CM‐N2), and (c) the denitrifier (DN) methods.
Results
The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM‐N2O performing superior for both NO3− and NH4+, followed by DN. Laboratories using MD significantly underestimated the “true” values due to incomplete recovery and also those using CM‐N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4‰ for NO3− and ± 32.9‰ for NH4+; SDs within laboratories were found to be considerably lower (on average 3.1‰). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered.
Conclusions
The inconsistency among all methods and laboratories raises concern about reported δ15N values particularly from environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.