Natural carboxylic acids are plant-derived compounds that are known to possess biological activity. The aim of this review was to compare the effect of structural differences of the selected carboxylic acids (benzoic acid (BA), cinnamic acid (CinA), p-coumaric acid (p-CA), caffeic acid (CFA), rosmarinic acid (RA), and chicoric acid (ChA)) on the antioxidant, antimicrobial, and cytotoxic activity. The studied compounds were arranged in a logic sequence of increasing number of hydroxyl groups and conjugated bonds in order to investigate the correlations between the structure and bioactivity. A review of the literature revealed that RA exhibited the highest antioxidant activity and this property decreased in the following order: RA > CFA ~ ChA > p-CA > CinA > BA. In the case of antimicrobial properties, structure-activity relationships were not easy to observe as they depended on the microbial strain and the experimental conditions. The highest antimicrobial activity was found for CFA and CinA, while the lowest for RA. Taking into account anti-cancer properties of studied NCA, it seems that the presence of hydroxyl groups had an influence on intermolecular interactions and the cytotoxic potential of the molecules, whereas the carboxyl group participated in the chelation of endogenous transition metal ions.
The present study investigated the biochemical response of aquatic plant Wolffia arrhiza (Lemnaceae) treated with lead (Pb) and cadmium (Cd) at a range of concentrations from 1 to 1000 microM. W. arrhiza has been identified as good scavenger of heavy metals from aqueous solution. Pb and Cd accumulation was found to be increased in a concentration- and duration-dependent manner. However, the highest biosorption of heavy metals was found in plants exposed to low levels (10 microM) of Cd and Pb in the nutrient medium. In observing the response to heavy-metal stress, we noted inhibited plant growth and decreased photosynthetic pigments, monosaccharides, and proteins. In addition, Cd was found to be more toxic to plants than Pb. Heavy metals also induced oxidative damage as evidenced by increased lipid peroxidation and hydrogen peroxide levels. In contrast, the deleterious effects resulting from the cellular oxidative state can be alleviated by enzymatic (catalase, ascorbate peroxidase, nicotinamide dinucleotide [NADH] peroxidase) and nonenzymatic (ascorbate, glutathione) antioxidant mechanisms activated in W. arrhiza plants exposed to Cd and Pb, especially at 10 microM. These results suggest that W. arrhiza is a promising bioindicator of heavy-metal toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.