While all lower limb prosthesis walkers have a high risk of tripping and/or falling, above knee prosthesis users are reported to fall more frequently. Recognising this, engineers designed microprocessor knees (MPK) to help mitigate these risks, but to what extent these devices reduce this disparity between above and below knee users is unclear. A service review was carried out in a prosthetic limb centre regarding the frequency of trips and falls in the previous four weeks. Data from unilateral, community ambulators were extracted. Ordered logistic regressions were applied to investigate whether MPKs mitigated the increased risk of trips and falls for prosthetic knee users, compared to below knee prosthesis users. Socio-demographics (sex, age), prosthesis (prosthesis type, years of use), health (comorbidities, vision, contralateral limb status, medication), and physical function (use of additional walking aids, activity level) were included as covariates. Of the 315 participants in the analysis, 57.5% reported tripping and 20.3% reported falling. Non-microprocessor prosthetic knee (non-MPK) users were shown to trip significantly more than below knee prosthesis users (OR = 1.96, 95% CI = 1.17–3.28). Other covariates showing a significant association included contralateral limb injuries (OR = 1.91, 95% CI = 1.15–3.18) and using an additional walking aid (OR = 1.99, 95% CI = 1.13–3.50). Non-MPK users were also shown to fall significantly more than below knee prosthesis users (OR = 3.34, 95% CI = 1.73–6.45), with no other covariates showing a significant association. MPK users did not show an increased frequency of trips (OR = 0.74, 95% CI = 0.33–1.64) or falls (OR = 0.34, 95% CI = 0.18–2.62), compared to below knee prosthesis users. Of those who tripped at least once in the previous four weeks, those using a non-MPK (OR = 2.73, 95% CI = 1.30–5.74) presented an increased frequency of falling. These findings provide evidence to suggest that the use of MPKs reduces the difference in falls risk between above knee and below knee prosthesis users, providing justification for their provision.
BACKGROUND: Lower limb amputees have a high incidence of comorbidities, such as osteoarthritis, which are believed to be caused by kinetic asymmetries. A lack of prosthetic adaptation to different terrains requires kinematic compensations, which may influence these asymmetries.METHOD: Six SIGAM grade E-F trans-tibial amputees (one bilateral) wore motion capture markers while standing on force plates, facing down a 5° slope. The participants were tested under three prosthetic conditions; a fixed attachment foot (FIX), a hydraulic ankle (HYD) and a microprocessor foot with a 'standing support' mode (MPF). The resultant ground reaction force (GRF) and support moment for prosthetic and sound limbs were chosen as outcome measures. These were compared between prosthetic conditions and to previously captured able-bodied control data. RESULTS:The distribution of GRF between sound and prosthetic limbs was not significantly affected by foot type. However, the MPF condition required fewer kinematic compensations, leading to a reduction in sound side support moment of 59% (p=0.001) and prosthetic side support moment of 43% (p=0.02) compared to FIX. For the bilateral participant, only the MPF positioned the GRF vector anterior to the knees, reducing the demand on the residual joints to maintain posture. CONCLUSION: For trans-tibial amputees, loading on lower limb joints is affected by prosthetic foot technology, due to the kinematic compensations required for slope adaptation. MPFs with 'standing support' might be considered reasonable and necessary for bilateral amputees, or amputees with stability problems due to the reduced biomechanical compensations evident. CITATION
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.