A CFD model of the two-phase countercurrent flow in the geometry of the plate-type structured packing Mellapak 250.Y was built, tested and verified. The model was applied to determine the effect of liquid and gas flow rates and physicochemical properties of the flowing liquids on the interfacial area formed on structured packing. The CFD model allowed us to determine the minimum liquid flow rate at which an unbroken liquid film was observed on the packing surface. The simulations confirmed that with an increase of the wetting rate the surface of the packing covered with a liquid film increased until the surface was totally covered up, while further slight changes of an interfacial area were the result of wave formation. The effect of gas load (F factor) on the film surface was in the range of a calculation error. Results of the CFD simulation allow us to predict the stages of film formation during liquid flow, to follow local velocity oscillations, film thickness and velocity profiles of phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.