In the present paper, new pyrimidine derivatives were designed, synthesized and analyzed in terms of their anticancer properties. The tested compounds were evaluated in vitro for their antitumor activity. The cytotoxic effect on normal human dermal fibroblasts (NHDF) was also determined. According to the results, all the tested compounds exhibited inhibitory activity on the proliferation of all lines of cancer cells (colon adenocarcinoma (LoVo), resistant colon adenocarcinoma (LoVo/DX), breast cancer (MCF-7), lung cancer (A549), cervical cancer (HeLa), human leukemic lymphoblasts (CCRF-CEM) and human monocytic (THP-1)). In particular, their feature stronger influence on the activity of P-glycoprotein of cell cultures resistant to doxorubicin than doxorubicin. Tested compounds have more lipophilic character than doxorubicin, which determines their affinity for the molecular target and passive transport through biological membranes. Moreover, the inhibitory potential against topoisomerase II and DNA intercalating properties of synthesized compounds were analyzed via molecular docking.
Background The p53 protein is a transcription factor for many genes, including genes involved in inhibiting cell proliferation and inducing apoptosis in genotoxically damaged and tumor-transformed cells. In more than 55% of cases of human cancers, loss of the essential function of p53 protein is found. In numerous reports, it has been shown that small molecules (chemical compounds) can restore the suppressor function of the mutant p53 protein in tumor cells. The aim of this study was to evaluate the potential anticancer activity of three newly synthesized olivacine derivatives. Methods The study was performed using two cell lines-CCRF/CEM (containing the mutant p53 protein) and A549 (containing a non-mutant, wild-type p53 protein). The cells were incubated with olivacine derivatives for 18 h and then assays were carried out: measurement of the amount of p53 and p21 proteins, detection of apoptosis, cell cycle analysis, and rhodamine 123 accumulation assay (evaluation of P-glycoprotein inhibition). Multiple-criteria decision analysis was used to compare the anticancer activity of the tested compounds. Results Each tested compound caused the reconstitution of suppressor activity of the p53 protein in cells with the mutant protein. In addition, one of the compounds showed significant antitumor activity in both wild-type and mutant cells. For all compounds, a stronger effect on the level of the p53 protein was observed than for the reference compound-ellipticine. Conclusions The observed effects of the tested new olivacine derivatives (pyridocarbazoles) suggest that they are good candidates for new anticancer drugs.
Olivacine is an alkaloid-containing pyridocarbazole structure. It is isolated from the bark of the evergreen timber tree, Aspidosperma olivaceum. Its well-documented anticancer activity led to the synthesis of new derivatives, which are semisynthetic and fully synthetic pyridocarbazoles. This study aimed to evaluate the potential antineoplastic activity of four newly synthesized olivacine derivatives. Multidrug resistance is a common phenomenon causing failure in the chemotherapy of many tumors. It is mainly related to increased function of P-glycoprotein, an efflux pump removing cytostatic out of the cells. The cell lines used in the study were colorectal carcinoma cell lines: LoVo (doxorubicin-sensitive) and LoVo/DX (doxorubicin-resistant). The NHDF cell line was used to assess cell viability. First, the cells were incubated with olivacine derivatives. In the next step, the following assays were performed: DCF-DA assay, MTT assay, rhodamine 123 assay, detection of apoptosis, proliferation inhibition-mitotic index. The tested compounds showed higher antineoplastic potential and lower toxicity than the reference compound ellipticine. The results indicate that the new olivacine derivatives are good candidates for future anticancer drugs.
This study examines the synthesis and cytostatic activity of new 5,6-dimethyl-1-substituted-6H-pyrido[4,3-b]carbazole derivatives. Their structures were confirmed by (1)H-NMR and elemental analysis. Seven of the new compounds were tested by the SRB method in vitro against human lung cancer (A549) and human kidney cancer (A498) cell lines. Biological tests indicated remarkable cytostatic effects of four compounds tested in comparison with ellipticine and cisplatin as reference drugs. One particular compound 3c was about four times more active on A498 than ellipticine with similar activity on the A549 cell line, and outperformed cisplatin activity on both tumor cell lines.
Olivacine and its derivatives are characterized by multidirectional biological activity. Noteworthy is their antiproliferative effect related to various mechanisms, such as inhibition of growth factors, enzymes, kinases and others. The activity of these compounds was tested on cell lines of various tumors. In most publications, the most active olivacine derivatives exceeded the effects of doxorubicin (a commonly used anticancer drug), so in the future, they may become the main new anticancer drugs. In this publication, we present the groups of the most active olivacine derivatives obtained. In this work, the in vitro and in vivo activity of olivacine and its most active derivatives are presented. We describe olivacine derivatives that have been in clinical trials. We conducted a structure–activity relationship (SAR) analysis that may be used to obtain new olivacine derivatives with better properties than the available anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.