The genomic RNA of human astrovirus serotype 1 (HAst-l) contains three open reading frames (ORFs), la, lb, and 2. ORF lb is located downstream of, and overlaps, la, and it has been suggested on the basis of sequence analysis that expression of ORF lb is mediated through-1 ribosomal frameshifting. To examine this possibility, a cDNA fragment containing the la-lb overlap region was cloned within a reporter gene and placed under the control of the bacteriophage SP6 promoter in a recombinant plasmid. Synthetic transcripts derived from this plasmid, when translated in the rabbit reticulocyte lysate cell-free system, specified the synthesis of polypeptides whose size and antibody reactivity were consistent with an efficient-1 ribosomal frameshift event at the overlap region. The HAst-l frameshift signal has two essential components, a heptanucleotide slippery sequence, A6C, and a stem-loop structure in the RNA. The presence of this structure was confirmed by complementary and compensatory mutation analysis and by direct structure probing with singleand double-stranded RNA-specific reagents. The HAst-l frameshift signal, like that present at the overlap of the gag and pro genes of the retrovirus human T-cell lymphotrophic virus type II, does not involve the formation of an RNA pseudoknot.
Expression of the Gag-Pol polyprotein of Rous sarcoma virus (RSV) requires a -1 ribosomal frameshifting event at the overlap region of the gag and pol open reading frames. The signal for frameshifting is composed of two essential mRNA elements; a slippery sequence (AAAUUUA) where the ribosome changes reading frame, and a stimulatory RNA structure located immediately downstream. This RNA is predicted to be a complex stem-loop but may also form an RNA pseudoknot. We have investigated the structure of the RSV frameshift signal by a combination of enzymatic and chemical structure probing and site-directed mutagenesis. The stimulatory RNA is indeed a complex stem-loop with a long stable stem and two additional stem-loops contained as substructures within the main loop region. The substructures are not however required for frameshifting. Evidence for an additional interaction between a stretch of nucleotides in the main loop and a region downstream to generate an RNA pseudoknot was obtained from an analysis of the frameshifting properties of RSV mutants translated in the rabbit reticulocyte lysate in vitro translation system. Mutations that disrupted the predicted pseudoknot-forming sequences reduced frameshifting but when the mutations were combined and should re-form the pseudoknot, frameshifting was restored to a level approaching that of the wild-type construct. It was also observed that the predicted pseudoknot-forming regions had reduced sensitivity to cleavage by the single-stranded probe imidazole. Overall, however, the structure probing data indicate that the pseudoknot interaction is weak and may form transiently. In comparison to other characterised RNA structures present at viral frameshift signals, the RSV stimulator falls into a novel group. It cannot be considered to be a simple hairpin-loop yet it is distinct from other well characterised frameshift-inducing RNA pseudoknots in that the overall contribution of the RSV pseudoknot to frameshifting is less dramatic.
Nairobi sheep disease (NSD) virus is the prototype of the tick-borne NSD serogroup, genus Nairovirus, family Bunyaviridae. It is highly pathogenic for sheep and goats, causes disease in humans, and is widespread throughout East Africa. Ganjam virus has caused disease in goats and humans in India. Due to their occurrence on different continents and association with different ticks, these viruses were considered distinct despite serologic cross-reactivity. Their S RNA genome segments and encoded nucleocapsid proteins were found to be 1590 nucleotides and 482 amino acids in length and differed by only 10 and 3% at nucleotide and amino acid levels, respectively. Genetic and serologic data demonstrate that Ganjam virus is an Asian variant of NSD virus. These viruses were phylogenetically more closely related to Hazara virus than Dugbe virus.
The frameshift signal of the avian coronavirus infectious bronchitis virus (IBV) contains two cis-acting signals essential for efficient frameshifting, a heptameric slippery sequence (UUUAAAC) and an RNA pseudoknot structure located downstream. The frameshift takes place at the slippery sequence with the two ribosome-bound tRNAs slipping back simultaneously by one nucleotide from the zero phase (U UUA AAC) to the -1 phase (UUU AAA). Asparaginyl-tRNA, which decodes the A-site codon AAC, has the modified base Q at the wobble position of the anticodon (5' QUU 3') and it has been speculated that Q may be required for frameshifting. To test this, we measured frameshifting in cos cells that had been passaged in growth medium containing calf serum or horse serum. Growth in horse serum, which contains no free queuine, eliminates Q from the cellular tRNA population upon repeated passage. Over ten cell passages, however, we found no significant difference in frameshift efficiency between the cell types, arguing against a role for Q in frameshifting. We confirmed that the cells cultured in horse serum were devoid of Q by purifying tRNAs and assessing their Q-content by tRNA transglycosylase assays and coupled HPLC-mass spectroscopy. Supplementation of the growth medium of cells grown either on horse serum or calf serum with free queuine had no effect on frameshifting either. These findings were recapitulated in an in vitro system using rabbit reticulocyte lysates that had been largely depleted of endogenous tRNAs and resupplemented with Q-free or Q-containing tRNA populations. Thus Q-base is not required for frameshifting at the IBV signal and some other explanation is required to account for the slipperiness of eukaryotic asparaginyl-tRNA.
The secreted yield of hen egg-white lysozyme (HEWL) from the filamentous fungus Aspergillus niger was increased 10-20-fold by constructing a novel gene fusion. The cDNA sequence encoding mature HEWL was fused in frame to part of the native A. niger gene encoding glucoamylase (glaA), separated by a proteolytic cleavage site for in vivo processing. Using this construct, peak secreted HEWL yields of 1 g/l were obtained in A. niger shake flask cultures compared to about 50 mg/l when using an expression cassette lacking any glaA coding sequence. The portion of glaA used in the gene fusion encoded the first 498 amino acids of glucoamylase (G498) and comprised its secretion signal, the catalytic domain and most of the O-glycosylated linker region which, in the entire glucoamylase molecule, spatially separates and links the catalytic and starch-binding domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.