This review gives an overview of different yeast strains and enzyme classes involved in yeast wholecell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp
Pyranose dehydrogenase (PDH) is a fungal flavin-dependent sugar oxidoreductase that is highly interesting for applications in organic synthesis or electrochemistry. The low expression levels of the filamentous fungus Agaricus meleagris as well as the demand for engineered PDH make heterologous expression necessary. Recently, Aspergillus species were described to efficiently secrete recombinant PDH. Here, we evaluate recombinant protein production with expression hosts more suitable for genetic engineering. Expression in Escherichia coli resulted in no soluble or active PDH. Heterologous expression in the methylotrophic yeast Pichia pastoris was investigated using two different signal sequences as well as a codon-optimized sequence. A 96-well plate activity screening for transformants of all constructs was established and the best expressing clone was used for large-scale production in 50-L scale, which gave a volumetric yield of 223 mg L−1 PDH or 1,330 U L−1 d−1 in space–time yield. Purification yielded 13.4 g of pure enzyme representing 95.8% of the initial activity. The hyperglycosylated recombinant enzyme had a 20% lower specific activity than the native enzyme; however, the kinetic properties were essentially identical. This study demonstrates the successful expression of PDH in the eukaryotic host organism P. pastoris paving the way for protein engineering. Additionally, the feasibility of large-scale production of the enzyme with this expression system together with a simplified purification scheme for easy high-yield purification is shown.Electronic supplementary materialThe online version of this article (doi:10.1007/s00253-011-3667-7) contains supplementary material, which is available to authorized users.
Screening for stereoselective cyanohydrin synthesis in 96-well plates was employed in the development of an efficient, pH-stable hydroxynitrile lyase for the conversion of sterically hindered aliphatic aldehydes. Site-saturation mutagenesis (SSM) resulted in a powerful catalyst for the stereoselective conversion of hydroxypivalaldehyde and pivalaldehyde to their corresponding (R)-cyanohydrins (ee > 97%) which are used as chiral building blocks (e.g., for pantothenic acid production). Furthermore, redesigning the PaHNL5 gene and improving its expression by Pichia pastoris with the help of a new P AOX1 promoter variant and the helper protein PDI (protein disulfide isomerase) led to elevated amounts of todays most efficient biocatalyst for vitamin B 5 synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.